Dynamic Graph Evolution Learning for Recommendation

计算机科学 杠杆(统计) 规范化(社会学) 机器学习 人工智能 图形 理论计算机科学 数据挖掘 人类学 社会学
作者
Haoran Tang,Shiqing Wu,Guandong Xu,Qing Li
标识
DOI:10.1145/3539618.3591674
摘要

Graph neural network (GNN) based algorithms have achieved superior performance in recommendation tasks due to their advanced capability of exploiting high-order connectivity between users and items. However, most existing GNN-based recommendation models ignore the dynamic evolution of nodes, where users will continuously interact with items over time, resulting in rapid changes in the environment (e.g., neighbor and structure). Moreover, the heuristic normalization of embeddings in dynamic recommendation is de-coupled with the model learning process, making the whole system suboptimal. In this paper, we propose a novel framework for generating satisfying recommendations in dynamic environments, called Dynamic Graph Evolution Learning (DGEL). First, we design three efficient real-time update learning methods for nodes from the perspectives of inherent interaction potential, time-decay neighbor augmentation, and symbiotic local structure learning. Second, we construct the re-scaling enhancement networks for dynamic embeddings to adaptively and automatically bridge the normalization process with model learning. Third, we leverage the interaction matching task and the future prediction task together for joint training to further improve performance. Extensive experiments on three real-world datasets demonstrate the effectiveness and improvements of our proposed DGEL. The code is available at https://github.com/henrictang/DGEL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧长一完成签到 ,获得积分0
刚刚
刚刚
素源完成签到,获得积分10
刚刚
烟花应助KeLiang采纳,获得10
1秒前
段欣怡完成签到,获得积分10
2秒前
木火完成签到,获得积分10
6秒前
luoman5656完成签到,获得积分10
6秒前
8秒前
8秒前
科研通AI2S应助代军采纳,获得10
10秒前
12秒前
13秒前
13秒前
14秒前
KeLiang发布了新的文献求助10
14秒前
15秒前
18秒前
11发布了新的文献求助10
18秒前
ddc_0819发布了新的文献求助10
18秒前
木瓜发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
CodeCraft应助王佐采纳,获得10
22秒前
xiaoyan发布了新的文献求助10
23秒前
小二郎应助A溶大美噶采纳,获得10
24秒前
25秒前
26秒前
28秒前
孙燕应助眼睛大映阳采纳,获得10
28秒前
sopha发布了新的文献求助10
28秒前
29秒前
酷波er应助任伟超采纳,获得10
29秒前
哈哈哈发布了新的文献求助30
30秒前
30秒前
tomorrow完成签到 ,获得积分10
32秒前
复杂秀发完成签到,获得积分20
33秒前
隐形挑战者完成签到,获得积分10
33秒前
ghgbhgybh发布了新的文献求助10
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079463
求助须知:如何正确求助?哪些是违规求助? 3618872
关于积分的说明 11484800
捐赠科研通 3335145
什么是DOI,文献DOI怎么找? 1833414
邀请新用户注册赠送积分活动 902551
科研通“疑难数据库(出版商)”最低求助积分说明 821127