亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inventory management for stockout-based substitutable products under centralised and competitive settings

缺货 库存管理 业务 利润(经济学) 永续盘存 库存(枪支) 经济订货量 产品(数学) 订单(交换) 存货理论 营销 供应链 微观经济学 经济 运营管理 工程类 机械工程 数学 财务 几何学
作者
Michal Koren,‪Yael Perlman‬‏,Matan Shnaiderman
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:62 (9): 3176-3192 被引量:2
标识
DOI:10.1080/00207543.2023.2222186
摘要

AbstractInventory planning in fashion markets is highly challenging, owing to uncertain demand; yet, in making inventory decisions, retailers may be able to capitalise on high substitutability between products. This research develops single-period inventory-management models describing a market with two substitutable products, under stockout-based substitution; i.e. when a customer's preferred product is out-of-stock, s/he may choose to purchase the substitute. Two settings are considered: centralised (a single retailer who sells both products) and competitive (two retailers, each selling one product). For each setting, we derive closed-form analytical solutions for the inventory levels that maximise expected profit. The model is further enriched with sales data from an online apparel retailer offering substitutable products (a sneaker in different colours), and we analyse the sensitivity of the optimal inventory levels and profits to parameter values. Key findings include the following: (i) Under competitive conditions, both retailers always order positive inventory so as not to lose customers. However, in a single-retailer setting, there are situations in which the retailer orders inventory for only one product. (ii) The optimal inventory levels and corresponding profits are highly sensitive to consumers' willingness to substitute between products. These findings provide concrete insights that can guide fashion brands' inventory-management decisions.KEYWORDS: Inventory managementstockout-based substitutionfashion industrygame theorysupply chain management AcknowledgementsThe authors would like to thank Isaac Meilijson for his help in estimating the joint demand and the three anonymous reviewers for their constructive comments and suggestions which have significantly improved the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData available on request from the authors.Additional informationFundingThis research was partially supported by the Israel Science Foundation (grant number 1898/21).Notes on contributorsMichal KorenMichal Koren holds a Ph.D. and an M.A. in Industrial Management, both from the Department of Management, Bar-Ilan University in Israel, and a B.Sc. in Industrial Engineering and Management from Shenkar- Engineering. Design. Art. Currently, she is a faculty member and deputy dean at the School of Industrial Engineering and Management at Shenkar- Engineering. Design. Art. Her research interests include Operations Research, Supply Chain, Machine Learning and Artificial Intelligence.Yael PerlmanYael Perlman is an Associate Professor of Operations Management in the Department of Management at Bar-Ilan University, Israel. She holds a BSc in Mathematics (TAU) an MBA in Operations Research (TAU) and a PhD in Industrial Engineering (BGU). Yael Perlman develops game theory-based models and queuing theory-based models to investigate strategic decisions of the supply chain members and the effect of intra-supply chain competition on the overall supply chain performance. Her papers have been published in some of the leading journals of Supply Chain Management and Operations Management.Matan ShnaidermanMatan Shnaiderman received M.S. and Ph.D. degrees in the Department of Mathematics, Bar-Ilan University in Israel. He is currently Senior Lecturer at the Department of Management, Bar-Ilan University. His research interests include supply-chain and inventory management, information sharing, public transit, frequency setting, energy production and stochastic dynamic programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangxu发布了新的文献求助10
7秒前
Zx_1993完成签到 ,获得积分0
9秒前
KP完成签到,获得积分10
20秒前
37秒前
38秒前
小苏完成签到,获得积分10
41秒前
slgg发布了新的文献求助10
42秒前
50秒前
小苏发布了新的文献求助10
56秒前
Tushar完成签到,获得积分10
1分钟前
1分钟前
似水流年发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助似水流年采纳,获得50
1分钟前
爆米花应助学术混子采纳,获得10
1分钟前
CES_SH完成签到,获得积分10
2分钟前
2分钟前
wbs13521完成签到,获得积分0
2分钟前
学术混子发布了新的文献求助10
2分钟前
2分钟前
gtgyh完成签到 ,获得积分10
2分钟前
2分钟前
学术混子完成签到,获得积分10
2分钟前
科研通AI5应助Moonchen采纳,获得10
2分钟前
斯文败类应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
Moonchen发布了新的文献求助10
2分钟前
不如无言完成签到,获得积分10
2分钟前
alim完成签到,获得积分10
2分钟前
2分钟前
KiraShaw应助爱听歌笑寒采纳,获得10
2分钟前
alim发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4728741
求助须知:如何正确求助?哪些是违规求助? 4084926
关于积分的说明 12633466
捐赠科研通 3791966
什么是DOI,文献DOI怎么找? 2094097
邀请新用户注册赠送积分活动 1119898
科研通“疑难数据库(出版商)”最低求助积分说明 996070