亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mesh U-Nets for 3D Cardiac Deformation Modeling

计算机科学 心脏周期 人工智能 多边形网格 深度学习 射血分数 体积网格 网格生成 模式识别(心理学) 算法 心脏病学 医学 有限元法 计算机图形学(图像) 心力衰竭 物理 热力学
作者
Marcel Beetz,Jorge Corral Acero,Abhirup Banerjee,Ingo Eitel,Ernesto Zacur,Torben Lange,Thomas Stiermaier,Ruben Evertz,Sören J. Backhaus,Holger Thiele,Alfonso Bueno‐Orovio,Pablo Lamata,Andreas Schuster,Vicente Grau
出处
期刊:Lecture Notes in Computer Science 卷期号:: 245-257 被引量:5
标识
DOI:10.1007/978-3-031-23443-9_23
摘要

During a cardiac cycle, the heart anatomy undergoes a series of complex 3D deformations, which can be analyzed to diagnose various cardiovascular pathologies including myocardial infarction. While volume-based metrics such as ejection fraction are commonly used in clinical practice to assess these deformations globally, they only provide limited information about localized changes in the 3D cardiac structures. The objective of this work is to develop a novel geometric deep learning approach to capture the mechanical deformation of complete 3D ventricular shapes, offering potential to discover new image-based biomarkers for cardiac disease diagnosis. To this end, we propose the mesh U-Net, which combines mesh-based convolution and pooling operations with U-Net-inspired skip connections in a hierarchical step-wise encoder-decoder architecture, in order to enable accurate and efficient learning directly on 3D anatomical meshes. The proposed network is trained to model both cardiac contraction and relaxation, that is, to predict the 3D cardiac anatomy at the end-systolic phase of the cardiac cycle based on the corresponding anatomy at end-diastole and vice versa. We evaluate our method on a multi-center cardiac magnetic resonance imaging (MRI) dataset of 1021 patients with acute myocardial infarction. We find mean surface distances between the predicted and gold standard anatomical meshes close to the pixel resolution of the underlying images and high similarity in multiple commonly used clinical metrics for both prediction directions. In addition, we show that the mesh U-Net compares favorably to a 3D U-Net benchmark by using 66% fewer network parameters and drastically smaller data sizes, while at the same time improving predictive performance by 14%. We also observe that the mesh U-Net is able to capture subpopulation-specific differences in mechanical deformation patterns between patients with different myocardial infarction types and clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Kevin采纳,获得10
12秒前
阿乌大王完成签到,获得积分10
21秒前
Calyn完成签到 ,获得积分10
32秒前
caca完成签到,获得积分0
33秒前
44秒前
45秒前
lisen发布了新的文献求助10
50秒前
www发布了新的文献求助10
51秒前
53秒前
Cosmosurfer完成签到,获得积分10
1分钟前
1分钟前
lisen完成签到,获得积分10
1分钟前
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
1分钟前
肆月完成签到 ,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
豆子完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高大的战斗机完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI5应助Linden_bd采纳,获得30
3分钟前
3分钟前
大水完成签到 ,获得积分10
4分钟前
满意的小鸽子完成签到,获得积分10
4分钟前
4分钟前
太阳cy完成签到 ,获得积分10
4分钟前
科研通AI2S应助南风采纳,获得10
5分钟前
Ricardo完成签到 ,获得积分10
5分钟前
深情安青应助山青水秀采纳,获得10
5分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
5分钟前
呜呜呜完成签到,获得积分20
5分钟前
橡树完成签到,获得积分10
5分钟前
6分钟前
宋江他大表哥完成签到,获得积分10
6分钟前
葫芦娃完成签到,获得积分20
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057097
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507