A lightweight convolutional neural network hardware implementation for wearable heart rate anomaly detection

计算机科学 计算机硬件 卷积神经网络 硬件加速 可穿戴计算机 浮点型 实时计算 嵌入式系统 人工智能 现场可编程门阵列 算法
作者
Minghong Gu,Yuejun Zhang,Yongzhong Wen,Guangpeng Ai,Huihong Zhang,Pengjun Wang,Guoqing Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106623-106623 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106623
摘要

In this article, we propose a lightweight and competitively accurate heart rhythm abnormality classification model based on classical convolutional neural networks in deep neural networks and hardware acceleration techniques to address the shortcomings of existing wearable devices for ECG detection. The proposed approach to build a high-performance ECG rhythm abnormality monitoring coprocessor achieves a high degree of data reuse in time and space, which reduces the number of data flows, provides a more efficient hardware implementation and reduces hardware resource consumption than most existing models. The designed hardware circuit relies on 16-bit floating-point numbers for data inference at the convolutional, pooling, and fully connected layers, and implements acceleration of the computational subsystem through a 21-group floating-point multiplicative-additive computational array and an adder tree. The front- and back-end design of the chip was completed on the TSMC 65 nm process. The device has an area of 0.191 mm2, a core voltage of 1 V, an operating frequency of 20 MHz, a power consumption of 1.1419 mW, and requires 5.12 kByte of storage space. The architecture was evaluated using the MIT-BIH arrhythmia database dataset, which showed a classification accuracy of 97.69% and a classification time of 0.3 ms for a single heartbeat. The hardware architecture offers high accuracy with a simple structure, low resource footprint, and the ability to operate on edge devices with relatively low hardware configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuC完成签到,获得积分10
刚刚
1秒前
1秒前
科目三应助Dr.lee采纳,获得10
4秒前
xjp发布了新的文献求助10
5秒前
cherish发布了新的文献求助10
6秒前
6秒前
mb发布了新的文献求助10
6秒前
天天快乐应助lwg采纳,获得10
7秒前
7秒前
8秒前
9秒前
隐形曼青应助mb采纳,获得10
10秒前
汉堡包应助YQF采纳,获得10
12秒前
聪明的谷菱完成签到 ,获得积分10
13秒前
高君奇发布了新的文献求助10
14秒前
诗轩发布了新的文献求助10
14秒前
14秒前
Orange应助xjp采纳,获得10
15秒前
CipherSage应助刘智山采纳,获得10
15秒前
李爱国应助小心薛了你采纳,获得10
17秒前
慕青应助幽灵采纳,获得10
18秒前
科研通AI5应助坦率铃铛采纳,获得10
19秒前
19秒前
快乐随心完成签到 ,获得积分10
19秒前
绿大暗发布了新的文献求助10
21秒前
23秒前
23秒前
222发布了新的文献求助10
23秒前
NexusExplorer应助高君奇采纳,获得10
24秒前
JUNE-gj发布了新的文献求助20
25秒前
27秒前
27秒前
星辰大海应助天亮了吗采纳,获得10
27秒前
28秒前
29秒前
30秒前
酷波er应助哼哼采纳,获得10
31秒前
xjp发布了新的文献求助10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635