A radiomics-based artificial intelligence model to assess the risk of relapse in localized colon cancer

无线电技术 队列 比例危险模型 回顾性队列研究 阶段(地层学) 病态的 特征选择 肿瘤科 弗雷明翰风险评分 医学 内科学 人工智能 放射科 计算机科学 古生物学 疾病 生物
作者
Carmen Prieto-de-la-Lastra,Juan Antonio Carbonell-Asíns,Ana Carolina Bueno,A. Gómez-Alderete,Marcos Busto,A B Alcolado-Jaramillo,Ana Jiménez-Pastor,Xavier Monzonís,Alberto Cuñat,Clara Montagut,P Moreno-Ruiz,Marisol Huerta,Desamparados Roda,Francisco Gimeno-Valiente,Alejandra Estepa‐Fernández,Fuensanta Bellvís–Bataller,Almudena Fuster-Matanzo,Joan Gibert,Susana Roselló,Carolina Martínez‐Ciarpaglini
出处
期刊:ESMO open [Elsevier BV]
卷期号:10 (8): 105495-105495
标识
DOI:10.1016/j.esmoop.2025.105495
摘要

Accurately estimating relapse risk in localized colon cancer (LCC) remains a challenge, as clinicopathological staging often fails to differentiate patients with a higher likelihood of recurrence. There is a need for novel tools to improve patient selection for post-operative chemotherapy. Radiomics has emerged as a powerful, noninvasive approach that may enhance clinical decision making. This retrospective study selected consecutive stage II and III LCC patients operated with curative intent from 2015 to 2017 in two academic institutions. Patients were assigned to either a training cohort made up of 80% of them or a test cohort, to further validate the initial findings. Penalized Cox proportional hazards and gradient boosted algorithms were designed to estimate time to relapse following a five-fold cross-validation process. Three models were assessed: (i) based only on clinical and pathological features, (ii) on radiomic features alone, and (iii) including clinical/pathological and radiomic variables. A new 'Risk Classification' score was generated based on the best risk assessment. A total of 278 patients were included in both cohorts. The Cox model trained with clinical and imaging variables showed the highest prognostic power, with a C-index of 0.68 and a mean cumulative dynamic area under the curve (AUC) of 0.69 on the test set. Feature screening identified 20 variables, including clinical data, radiomics features, and fractal features. SHapley Additive exPlanations (SHAP) analysis highlighted factors related to geometry, vascular invasion, and tumor stage as significant variables related to relapse. The new 'Risk Classification' score was able to identify patients with high risk of relapse both in univariable [hazard ratio (HR) 14.22, 95% confidence interval (CI) 1.91-106.08, P = 0.010] and multivariable (HR 11.74, 95% CI, 1.54-89.34, P = 0.017) models. Risk analysis revealed the new 'Risk Classification' variable as the one with the highest prognostic power compared with the ones currently used. Our findings suggest the potential for improved time-to-relapse estimation, enabling better patient stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1234驳回了桐桐应助
1秒前
1秒前
hrs完成签到 ,获得积分10
3秒前
Mrmao0213发布了新的文献求助10
4秒前
LMosn完成签到,获得积分10
4秒前
5秒前
Yule发布了新的文献求助10
6秒前
科研通AI6应助啦啦啦采纳,获得10
7秒前
简单若云完成签到,获得积分10
8秒前
张一一完成签到,获得积分10
10秒前
科目三应助哈哈采纳,获得10
12秒前
Yule发布了新的文献求助10
12秒前
善学以致用应助鑫搭采纳,获得10
13秒前
亦汐发布了新的文献求助10
13秒前
15秒前
15秒前
17秒前
丘比特应助橘子果酱采纳,获得10
17秒前
迅速的丑发布了新的文献求助10
18秒前
远志发布了新的文献求助10
19秒前
Yule发布了新的文献求助30
20秒前
20秒前
Cala洛~完成签到 ,获得积分10
20秒前
简单若云发布了新的文献求助10
22秒前
23秒前
胖莹完成签到 ,获得积分10
25秒前
123完成签到,获得积分10
26秒前
Yule发布了新的文献求助10
26秒前
27秒前
万能图书馆应助荣荣liu采纳,获得10
27秒前
褚倩倩完成签到,获得积分10
28秒前
Jasper应助zjujirenjie采纳,获得10
28秒前
Bowen Chu完成签到,获得积分10
28秒前
哈哈发布了新的文献求助10
29秒前
32秒前
Yule发布了新的文献求助10
32秒前
科研通AI6应助啦啦啦采纳,获得10
35秒前
安的沛白发布了新的文献求助10
37秒前
毅诚菌发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4785601
求助须知:如何正确求助?哪些是违规求助? 4112295
关于积分的说明 12722183
捐赠科研通 3837345
什么是DOI,文献DOI怎么找? 2115794
邀请新用户注册赠送积分活动 1138621
关于科研通互助平台的介绍 1024956