DSEU-net: A novel deep supervision SEU-net for medical ultrasound image segmentation

雅卡索引 计算机科学 分割 人工智能 特征(语言学) 超声波 模式识别(心理学) 掷骰子 精确性和召回率 编码器 深度学习 医学 数学 放射科 统计 哲学 操作系统 语言学
作者
Gongping Chen,Yuming Liu,Qian Jiang,Jianxun Zhang,Xiaotao Yin,Liang Cui,Yu Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119939-119939 被引量:26
标识
DOI:10.1016/j.eswa.2023.119939
摘要

The automatic and accurate medical ultrasound image segmentation has been a challenging task due to the coupled interference of various internal and external factors. In recent years, CNN techniques have been widely and successfully used in medical image segmentation. Motivated by this, this paper proposes a novel squeeze-and-excitation attention U-net with deep supervision (DSEU-net) for medical ultrasound image segmentation. Specifically, a deeper U-net is first used as a benchmark network to capture sufficient target feature information from complex ultrasound images. Then, the squeeze-and-excitation (SE) block is regarded as the bond between encoder and decoder to enhance the attention to useful object regions. Moreover, the introduction of SE block not only strengthens the association of useful information at a distance, but also suppresses the introduction of irrelevant information. Finally, the deep supervised constraints are added to the decoding stage of the network to refine the prediction masks of ultrasound images. Extensive experimental results on three clinical ultrasound datasets show that DSEU-net has better robustness and superiority in ultrasound image segmentation. In the segmentation of the first breast ultrasound dataset (BUSI), the values of Jaccard, Precision, Recall, Specificity and Dice are 70.36%, 79.73%, 82.70%, 97.42% and 78.51%, respectively. The values of Jaccard, Precision, Recall, Specificity and Dice for our method on the second breast ultrasound dataset (Dataset B) are 73.17%, 82.58%, 84.02%, 99.05% and 81.50%, respectively. For the segmentation of kidney ultrasound dataset (KUS), the values of Jaccard, Precision, Recall, Specificity, Dice, HD, ASSD and ABD are 89.47, 94.77, 94.36, 99.10, 94.32, 12.42, 0.48 and 3.44, respectively. Comparing with the original U-net, DSEU-net improved on average 8.28% and 12.55% on five metrics for two breast ultrasound data. DSEU-net improved on average 54.81% on eight metrics for the kidney ultrasound dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的丹彤完成签到 ,获得积分10
2秒前
wst1988完成签到,获得积分10
2秒前
文迪发布了新的文献求助10
2秒前
亿只金猪完成签到 ,获得积分10
4秒前
mini发布了新的文献求助10
4秒前
李爱国应助怡然幼枫采纳,获得10
4秒前
Loik完成签到,获得积分10
4秒前
标致的问晴完成签到,获得积分10
6秒前
活力的妙芙完成签到,获得积分10
6秒前
小二郎应助火星上初翠采纳,获得10
6秒前
懒癌晚期完成签到,获得积分10
11秒前
hero应助zhiwei采纳,获得10
11秒前
西柚完成签到,获得积分10
13秒前
田様应助weiwei采纳,获得30
13秒前
14秒前
星辰大海应助甜美早晨采纳,获得10
14秒前
WxChen发布了新的文献求助10
15秒前
helpmepaper完成签到,获得积分10
16秒前
文瑄完成签到 ,获得积分0
16秒前
17秒前
Hello应助怡然幼枫采纳,获得10
17秒前
19秒前
季不住完成签到,获得积分10
19秒前
研友_LXdbaL完成签到,获得积分10
20秒前
阿尔卑斯完成签到,获得积分10
20秒前
妞妞驳回了乐乐应助
20秒前
20秒前
ybmdyr发布了新的文献求助10
21秒前
可乐SAMA发布了新的文献求助10
23秒前
文献狂人发布了新的文献求助10
23秒前
乐观的涵菱完成签到,获得积分10
26秒前
WxChen完成签到,获得积分10
26秒前
26秒前
酷炫若枫完成签到,获得积分10
26秒前
火星上初翠完成签到,获得积分10
26秒前
shine完成签到 ,获得积分10
27秒前
28秒前
ybmdyr完成签到,获得积分10
29秒前
可乐SAMA完成签到,获得积分10
29秒前
whoami完成签到,获得积分20
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726