FieldPlant: A Dataset of Field Plant Images for Plant Disease Detection and Classification With Deep Learning

计算机科学 人工智能 领域(数学) 植物病害 深度学习 模式识别(心理学) 数学 生物技术 纯数学 生物
作者
Emmanuel Moupojou,Appolinaire Tagne,Florent Retraint,Anicet Tadonkemwa,Dongmo Wilfried,Hyppolite Tapamo,Marcellin Nkenlifack
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 35398-35410 被引量:73
标识
DOI:10.1109/access.2023.3263042
摘要

The Food and Agriculture Organization of the United Nations suggests increasing the food supply by 70% to feed the world population by 2050, although approximately one third of all food is wasted because of plant diseases or disorders. To achieve this goal, researchers have proposed many deep learning models to help farmers detect diseases in their crops as efficiently as possible to avoid yield declines. These models are usually trained on personal or public plant disease datasets such as PlantVillage or PlantDoc. PlantVillage is composed of laboratory images captured under laboratory conditions, with one leaf each and a uniform background. The models trained on this dataset have very low accuracies when running on field images with complex backgrounds and multiple leaves per image. To solve this problem, PlantDoc was built using 2,569 field images downloaded from the Internet and annotated to identify the individual leaves. However, this dataset includes some laboratory images and the absence of plant pathologists during the annotation process may have resulted in misclassification. In this study, FieldPlant is suggested as a dataset that includes 5,170 plant disease images collected directly from plantations. Manual annotation of individual leaves on each image was performed under the supervision of plant pathologists to ensure process quality. This resulted in 8,629 individual annotated leaves across the 27 disease classes. We ran various benchmarks on this dataset to evaluate state-of-the-art classification and object detection models and found that classification tasks on FieldPlant outperformed those on PlantDoc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
关添完成签到,获得积分10
4秒前
小二郎应助Tuan采纳,获得10
4秒前
大意的乐菱完成签到,获得积分10
4秒前
木木完成签到,获得积分10
5秒前
录音机的基本原理完成签到,获得积分10
6秒前
木木发布了新的文献求助10
8秒前
9秒前
9秒前
wanci应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得50
10秒前
Owen应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
13秒前
13秒前
达啦崩啦完成签到 ,获得积分10
13秒前
Tuan发布了新的文献求助10
15秒前
Mandy发布了新的文献求助10
16秒前
AU完成签到 ,获得积分10
20秒前
大气的以寒完成签到,获得积分10
20秒前
23秒前
23秒前
Tuan完成签到,获得积分10
23秒前
lj完成签到 ,获得积分10
25秒前
欢呼毛豆完成签到,获得积分10
25秒前
空白发布了新的文献求助10
27秒前
27秒前
NovermberRain完成签到,获得积分10
29秒前
橙子完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878