New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis

医学 技术 人工智能 乳腺摄影术 工作流程 医学物理学 乳腺癌筛查 数字乳腺摄影术 乳腺癌 恶性肿瘤 机器学习 放射科 乳房成像 癌症 计算机科学 病理 内科学 数据库
作者
Julia E. Goldberg,Beatriu Reig,Alan A. Lewin,Yiming Gao,Laura Heacock,Samantha L. Heller,Linda Moy
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:43 (1) 被引量:2
标识
DOI:10.1148/rg.220060
摘要

The use of digital breast tomosynthesis (DBT) in breast cancer screening has become widely accepted, facilitating increased cancer detection and lower recall rates compared with those achieved by using full-field digital mammography (DM). However, the use of DBT, as compared with DM, raises new challenges, including a larger number of acquired images and thus longer interpretation times. While most current artificial intelligence (AI) applications are developed for DM, there are multiple potential opportunities for AI to augment the benefits of DBT. During the diagnostic steps of lesion detection, characterization, and classification, AI algorithms may not only assist in the detection of indeterminate or suspicious findings but also aid in predicting the likelihood of malignancy for a particular lesion. During image acquisition and processing, AI algorithms may help reduce radiation dose and improve lesion conspicuity on synthetic two-dimensional DM images. The use of AI algorithms may also improve workflow efficiency and decrease the radiologist's interpretation time. There has been significant growth in research that applies AI to DBT, with several algorithms approved by the U.S. Food and Drug Administration for clinical implementation. Further development of AI models for DBT has the potential to lead to improved practice efficiency and ultimately improved patient health outcomes of breast cancer screening and diagnostic evaluation. See the invited commentary by Bahl in this issue. ©RSNA, 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助长情尔曼采纳,获得10
刚刚
岸在海的深处完成签到 ,获得积分10
刚刚
1秒前
斯文的萝莉完成签到,获得积分10
1秒前
欢呼的鲂完成签到,获得积分10
3秒前
6秒前
SS1025861完成签到 ,获得积分10
7秒前
天天快乐应助莉莉娅89采纳,获得10
9秒前
wuhoo发布了新的文献求助10
11秒前
12秒前
12秒前
长情尔曼完成签到,获得积分10
13秒前
17秒前
长情尔曼发布了新的文献求助10
17秒前
dennisysz发布了新的文献求助10
17秒前
17秒前
小蜗牛完成签到 ,获得积分10
20秒前
lxy发布了新的文献求助10
22秒前
23秒前
完美世界应助义气的访波采纳,获得10
27秒前
28秒前
豌豆发布了新的文献求助10
28秒前
沉静的时光完成签到 ,获得积分10
28秒前
28秒前
NexusExplorer应助Gakay采纳,获得10
29秒前
CodeCraft应助豌豆采纳,获得10
31秒前
若有光发布了新的文献求助30
32秒前
33秒前
mao应助林qjr采纳,获得20
34秒前
jasonjiang完成签到 ,获得积分0
39秒前
爆米花应助若有光采纳,获得10
39秒前
Orange应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
大个应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
44秒前
天天快乐应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133