Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience

肾切除术 背景(考古学) 卷积神经网络 医学 人工智能 计算机科学 软件 外科 医学物理学 机器学习 内科学 古生物学 程序设计语言 生物
作者
Alberto Piana,Daniele Amparore,Michele Sica,G. Volpi,Enrico Checcucci,Federico Piramide,Sabrina De Cillis,Giovanni Busacca,Gianluca Scarpelli,Flavio Sidoti,Stefano Alba,Pietro Piazzolla,Cristian Fiori,Francesco Porpiglia,Michele Di Dio
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 1047-1047 被引量:3
标识
DOI:10.3390/cancers16051047
摘要

The aim of “Precision Surgery” is to reduce the impact of surgeries on patients’ global health. In this context, over the last years, the use of three-dimensional virtual models (3DVMs) of organs has allowed for intraoperative guidance, showing hidden anatomical targets, thus limiting healthy-tissue dissections and subsequent damage during an operation. In order to provide an automatic 3DVM overlapping in the surgical field, we developed and tested a new software, called “ikidney”, based on convolutional neural networks (CNNs). From January 2022 to April 2023, patients affected by organ-confined renal masses amenable to RAPN were enrolled. A bioengineer, a software developer, and a surgeon collaborated to create hyper-accurate 3D models for automatic 3D AR-guided RAPN, using CNNs. For each patient, demographic and clinical data were collected. A total of 13 patients were included in the present study. The average anchoring time was 11 (6–13) s. Unintended 3D-model automatic co-registration temporary failures happened in a static setting in one patient, while this happened in one patient in a dynamic setting. There was one failure; in this single case, an ultrasound drop-in probe was used to detect the neoplasm, and the surgery was performed under ultrasound guidance instead of AR guidance. No major intraoperative nor postoperative complications (i.e., Clavien Dindo > 2) were recorded. The employment of AI has unveiled several new scenarios in clinical practice, thanks to its ability to perform specific tasks autonomously. We employed CNNs for an automatic 3DVM overlapping during RAPN, thus improving the accuracy of the superimposition process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助笑笑采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得50
5秒前
大个应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助zbl1314zbl采纳,获得10
6秒前
LeezZZZ发布了新的文献求助10
7秒前
11秒前
turbox应助JIANYOUFU采纳,获得30
11秒前
李渤海完成签到,获得积分10
13秒前
笑笑发布了新的文献求助10
15秒前
怕黑香菇发布了新的文献求助10
16秒前
隐形曼青应助LeezZZZ采纳,获得10
16秒前
lab完成签到 ,获得积分0
21秒前
黄小北发布了新的文献求助30
24秒前
李健的粉丝团团长应助11采纳,获得10
25秒前
27秒前
28秒前
28秒前
32秒前
LeezZZZ发布了新的文献求助10
33秒前
sailingluwl完成签到,获得积分10
33秒前
AC赵先生完成签到,获得积分10
34秒前
37秒前
38秒前
xzy998应助SWEETYXY采纳,获得30
40秒前
晓宇发布了新的文献求助30
42秒前
11发布了新的文献求助10
43秒前
林欣雨发布了新的文献求助10
44秒前
852应助怕黑香菇采纳,获得10
49秒前
Dlan发布了新的文献求助10
50秒前
53秒前
小锅完成签到 ,获得积分10
55秒前
意大利完成签到,获得积分10
56秒前
UUUUUp发布了新的文献求助10
1分钟前
稳重的安萱完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385