Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience

肾切除术 背景(考古学) 卷积神经网络 医学 人工智能 计算机科学 软件 外科 医学物理学 机器学习 内科学 生物 古生物学 程序设计语言
作者
Alberto Piana,Daniele Amparore,Michele Sica,G. Volpi,Enrico Checcucci,Federico Piramide,Sabrina De Cillis,Giovanni Busacca,Gianluca Scarpelli,Flavio Sidoti,Stefano Alba,Pietro Piazzolla,Cristian Fiori,Francesco Porpiglia,Michele Di Dio
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 1047-1047 被引量:3
标识
DOI:10.3390/cancers16051047
摘要

The aim of “Precision Surgery” is to reduce the impact of surgeries on patients’ global health. In this context, over the last years, the use of three-dimensional virtual models (3DVMs) of organs has allowed for intraoperative guidance, showing hidden anatomical targets, thus limiting healthy-tissue dissections and subsequent damage during an operation. In order to provide an automatic 3DVM overlapping in the surgical field, we developed and tested a new software, called “ikidney”, based on convolutional neural networks (CNNs). From January 2022 to April 2023, patients affected by organ-confined renal masses amenable to RAPN were enrolled. A bioengineer, a software developer, and a surgeon collaborated to create hyper-accurate 3D models for automatic 3D AR-guided RAPN, using CNNs. For each patient, demographic and clinical data were collected. A total of 13 patients were included in the present study. The average anchoring time was 11 (6–13) s. Unintended 3D-model automatic co-registration temporary failures happened in a static setting in one patient, while this happened in one patient in a dynamic setting. There was one failure; in this single case, an ultrasound drop-in probe was used to detect the neoplasm, and the surgery was performed under ultrasound guidance instead of AR guidance. No major intraoperative nor postoperative complications (i.e., Clavien Dindo > 2) were recorded. The employment of AI has unveiled several new scenarios in clinical practice, thanks to its ability to perform specific tasks autonomously. We employed CNNs for an automatic 3DVM overlapping during RAPN, thus improving the accuracy of the superimposition process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
冯老三完成签到 ,获得积分10
6秒前
八段锦完成签到 ,获得积分10
6秒前
海盐响叮当完成签到,获得积分10
7秒前
7秒前
Nothing完成签到 ,获得积分10
8秒前
科研通AI2S应助清晨仪仪采纳,获得10
10秒前
内向晓旋发布了新的文献求助10
11秒前
14秒前
CCC发布了新的文献求助10
14秒前
Jasper应助racill采纳,获得10
14秒前
蛋挞没有挞完成签到,获得积分10
15秒前
桐桐应助王珺采纳,获得10
16秒前
zho发布了新的文献求助10
18秒前
感谢帮助完成签到,获得积分10
19秒前
Cecilia发布了新的文献求助10
23秒前
eason应助无奈易绿采纳,获得30
24秒前
25秒前
28秒前
小枫完成签到,获得积分10
28秒前
希望天下0贩的0应助YAMO一采纳,获得10
29秒前
29秒前
良仑发布了新的文献求助10
30秒前
32秒前
李爱国应助cccc采纳,获得30
32秒前
常佳仟完成签到,获得积分10
32秒前
狂奔的蜗牛完成签到,获得积分10
33秒前
Sicecream完成签到,获得积分10
33秒前
怕孤独的飞飞完成签到,获得积分10
33秒前
幽默一江发布了新的文献求助10
33秒前
韭黄完成签到,获得积分20
33秒前
小马哥发布了新的文献求助10
33秒前
35秒前
cccc完成签到,获得积分10
35秒前
37秒前
lin发布了新的文献求助10
38秒前
求助完成签到,获得积分10
40秒前
雪白妙之应助幽默一江采纳,获得10
41秒前
田様应助幽默一江采纳,获得10
41秒前
41秒前
高分求助中
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126004
求助须知:如何正确求助?哪些是违规求助? 3663545
关于积分的说明 11592803
捐赠科研通 3363408
什么是DOI,文献DOI怎么找? 1848078
邀请新用户注册赠送积分活动 912211
科研通“疑难数据库(出版商)”最低求助积分说明 827907