Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers With Partially Annotated Ultrasound Images

计算机辅助设计 计算机辅助诊断 人工智能 感兴趣区域 深度学习 医学 乳腺摄影术 乳腺超声检查 阶段(地层学) 注释 人工神经网络 乳腺癌 计算机科学 模式识别(心理学) 机器学习 癌症 内科学 工程类 古生物学 工程制图 生物
作者
J. Wang,Liang Qiao,Shichong Zhou,Jin Zhou,Jun Wang,Juncheng Li,Shihui Ying,Cai Chang,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2509-2521 被引量:10
标识
DOI:10.1109/tmi.2024.3366940
摘要

Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automatic CAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation to limit the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to improve diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the initial ROI-level labels are considered as coarse annotations before model training. In the first training stage, a candidate selection mechanism is then designed to refine manual ROIs in the fully annotated images and generate accurate pseudo-ROIs for the partially annotated images under the guidance of class labels. The training set is updated with more accurate ROI labels for the second training stage. A fusion network is developed to integrate detection network and classification network into a unified end-to-end framework as the final CAD model in the second training stage. A self-distillation strategy is designed on this model for joint optimization to further improves its diagnosis performance. The proposed TSDDNet is evaluated on three B-mode ultrasound datasets, and the experimental results indicate that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaoxiaogao完成签到,获得积分10
刚刚
1秒前
ll完成签到 ,获得积分10
1秒前
大模型应助闪闪月亮采纳,获得10
1秒前
2秒前
tutu发布了新的文献求助10
2秒前
叶子宁完成签到,获得积分10
3秒前
唐新惠完成签到 ,获得积分10
3秒前
夜白完成签到,获得积分0
4秒前
陈昭琼发布了新的文献求助10
5秒前
地平发布了新的文献求助30
5秒前
闻晓晴完成签到,获得积分10
5秒前
狂炫AD钙奶完成签到,获得积分10
5秒前
6秒前
pcy完成签到,获得积分10
6秒前
咿呀发布了新的文献求助30
7秒前
小吴完成签到,获得积分10
7秒前
穿靴子的Caroline完成签到,获得积分10
7秒前
8秒前
小蘑菇应助4Xchua采纳,获得10
9秒前
因为我从来是那样完成签到,获得积分10
9秒前
9秒前
上官若男应助沉默的婴采纳,获得10
10秒前
10秒前
Common完成签到,获得积分10
10秒前
11秒前
烂漫烧鹅完成签到,获得积分10
11秒前
慕青应助永远永远采纳,获得10
11秒前
瀚泛完成签到,获得积分10
12秒前
打卡下班应助沐沐子采纳,获得10
12秒前
12秒前
王凯文完成签到,获得积分10
12秒前
欣欣紫发布了新的文献求助30
13秒前
雷乾完成签到,获得积分10
13秒前
cdercder应助背后的金针菇采纳,获得10
13秒前
海豚发布了新的文献求助10
13秒前
Lucas应助夏冰雹采纳,获得10
14秒前
TT完成签到,获得积分10
14秒前
欣喜书易完成签到 ,获得积分10
14秒前
CatC发布了新的文献求助10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Overcoming Synthetic Challenges in Medicinal Chemistry Mechanistic Insights and Solutions 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075735
求助须知:如何正确求助?哪些是违规求助? 3614768
关于积分的说明 11472959
捐赠科研通 3332677
什么是DOI,文献DOI怎么找? 1831832
邀请新用户注册赠送积分活动 901654
科研通“疑难数据库(出版商)”最低求助积分说明 820495