PVswin-YOLOv8s: UAV-Based Pedestrian and Vehicle Detection for Traffic Management in Smart Cities Using Improved YOLOv8

行人 运输工程 计算机科学 行人检测 航空学 工程类
作者
Noor Ul Ain Tahir,Zhe Long,Zuping Zhang,Muhammad Asim,Mohammed ElAffendi
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (3): 84-84 被引量:51
标识
DOI:10.3390/drones8030084
摘要

In smart cities, effective traffic congestion management hinges on adept pedestrian and vehicle detection. Unmanned Aerial Vehicles (UAVs) offer a solution with mobility, cost-effectiveness, and a wide field of view, and yet, optimizing recognition models is crucial to surmounting challenges posed by small and occluded objects. To address these issues, we utilize the YOLOv8s model and a Swin Transformer block and introduce the PVswin-YOLOv8s model for pedestrian and vehicle detection based on UAVs. Firstly, the backbone network of YOLOv8s incorporates the Swin Transformer model for global feature extraction for small object detection. Secondly, to address the challenge of missed detections, we opt to integrate the CBAM into the neck of the YOLOv8. Both the channel and the spatial attention modules are used in this addition because of how well they extract feature information flow across the network. Finally, we employ Soft-NMS to improve the accuracy of pedestrian and vehicle detection in occlusion situations. Soft-NMS increases performance and manages overlapped boundary boxes well. The proposed network reduced the fraction of small objects overlooked and enhanced model detection performance. Performance comparisons with different YOLO versions ( for example YOLOv3 extremely small, YOLOv5, YOLOv6, and YOLOv7), YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l), and classical object detectors (Faster-RCNN, Cascade R-CNN, RetinaNet, and CenterNet) were used to validate the superiority of the proposed PVswin-YOLOv8s model. The efficiency of the PVswin-YOLOv8s model was confirmed by the experimental findings, which showed a 4.8% increase in average detection accuracy (mAP) compared to YOLOv8s on the VisDrone2019 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
陌雪完成签到,获得积分10
2秒前
2秒前
整齐思天完成签到,获得积分10
3秒前
神鹰完成签到,获得积分10
3秒前
feng完成签到,获得积分10
5秒前
十八完成签到 ,获得积分10
5秒前
壮观采文应助李崮嵘采纳,获得10
6秒前
懵懂的飞飞完成签到,获得积分10
6秒前
Enma发布了新的文献求助10
6秒前
英俊的铭应助缥缈的凝海采纳,获得10
8秒前
beikou完成签到,获得积分10
9秒前
哭泣的猕猴桃完成签到,获得积分10
11秒前
12秒前
Ting5201完成签到,获得积分10
13秒前
务实的乐天完成签到,获得积分10
13秒前
平淡的博涛完成签到,获得积分10
13秒前
宋女士发布了新的文献求助10
14秒前
oaso完成签到,获得积分10
14秒前
科研通AI6应助gilderf采纳,获得10
14秒前
不想干活应助feng采纳,获得10
15秒前
MG_XSJ完成签到,获得积分10
16秒前
小郭子完成签到,获得积分10
18秒前
xxzztt发布了新的文献求助10
18秒前
我是老大应助ouou采纳,获得10
19秒前
tt发布了新的文献求助10
20秒前
21秒前
迷人的寄容完成签到,获得积分10
22秒前
Meyako应助张成协采纳,获得10
23秒前
加急发布了新的文献求助10
26秒前
nnmmuu完成签到,获得积分10
26秒前
隐形曼青应助迷人的寄容采纳,获得10
26秒前
陈同学完成签到 ,获得积分10
27秒前
27秒前
alanbike发布了新的文献求助10
28秒前
小巧幼蓉发布了新的文献求助10
28秒前
xgrr完成签到,获得积分10
29秒前
Yuki完成签到 ,获得积分10
29秒前
苹果柜子完成签到 ,获得积分10
29秒前
七仔完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4475074
求助须知:如何正确求助?哪些是违规求助? 3933600
关于积分的说明 12204480
捐赠科研通 3588199
什么是DOI,文献DOI怎么找? 1972758
邀请新用户注册赠送积分活动 1010479
科研通“疑难数据库(出版商)”最低求助积分说明 904080