物理
亚稳态
气泡
流体力学
机械
计算流体力学
动力学(音乐)
统计物理学
经典力学
量子力学
声学
作者
Q. B. Yi,Pengcheng Guo,Zhigang Zuo,Shuhong Liu
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-02-01
卷期号:36 (2)
被引量:2
摘要
This study investigates the dynamic modeling of a spherical vapor bubble in an infinite liquid. Initially, the liquid is in a state of saturation, but then, there is a change in ambient pressure. Unlike previous studies that assumed vapor saturation, our model fully considers the metastable fluid state of subcooled vapor and superheated liquid. The theoretical model is based on the state equation of vapor and the kinetic theory of gases, allowing the visualization of the effects of superheating and subcooling on the bubble pressure and the phase transition rate. The accuracy of the numerical solutions for the bubble collapse and growth is confirmed by experimental results using water as the working fluid. Two approaches of heat transfer simplification are validated in the numerical solution, and an adhesion coefficient within the range of 0.1–1 is recommended for the calculation. Additionally, this study provides insights into how the metastable fluid state affects the bubble pressure and phase transition, especially in the early stages of bubble collapse. Furthermore, the conservation of vapor mass inside the bubble is also demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI