Carbon emission efficiency of 284 cities in China based on machine learning approach: Driving factors and regional heterogeneity

驱动因素 空间异质性 经济地理学 排名(信息检索) 能源消耗 地理 可再生能源 人口 中国 环境经济学 经济 计算机科学 工程类 生态学 社会学 人口学 考古 机器学习 电气工程 生物
作者
Peixue Xing,Yanan Wang,Tao Ye,Ying Sun,Qiao Li,Xiaoyan Li,Meng Li,Wei Chen
出处
期刊:Energy Economics [Elsevier BV]
卷期号:129: 107222-107222 被引量:51
标识
DOI:10.1016/j.eneco.2023.107222
摘要

The rational categorization and assessment of carbon emission efficiency (CEE) and its drivers are crucial for coping with the global climate crisis. To address the bias of univariate modeling and challenge of ignoring the heterogeneity of drivers across cities, this study explores differences between carbon emission drivers across different types of cities and regions to reveal the spatial distribution characteristics of urban CEE and heterogeneity of emission reduction potential. We use a non-radial, non-directional relaxation measure-based directional distance function (SBM-DDF) model to assess the CEE of 284 cities over the period from 2006 to 2020. Machine-learning algorithms are applied to identify city characteristics to determine the effects of city- development types and their characteristic drivers. The results of the driver analysis show that energy consumption, gross regional product, spatial area, and population size are the key factors influencing in the heterogeneity of cities' CEE, with an importance ranking of 0.578, 0.507, 0.432, and 0.418, respectively. The results of for the heterogeneity of the cities' heterogeneity further confirm that energy consumption has the greatest impact on energy-dependent cities (EDCs), economic-development cities (ECDCs), and low-carbon potential cities (LPCs), whereas among the Low-carbon growth cities (LCGs), science, technology, and innovation, urban greening, and electricity consumption play an important roles in promoting greening and low- carbon development, which can help to determine the low- carbon development model for each type of city. Finally, energy consumption affects cities in the central region more than in the eastern and western regions. Based on the results of estimating the heterogeneity of urban carbon- emission rates, we propose customized emission- reduction development pathways to guide urban low-carbon development and formulate carbon- reduction policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的映之完成签到 ,获得积分10
刚刚
Akim应助负责的方盒采纳,获得10
1秒前
1秒前
刘亚男发布了新的文献求助10
1秒前
1秒前
better完成签到,获得积分10
2秒前
凶狠的蓉发布了新的文献求助10
2秒前
ding应助y12采纳,获得10
2秒前
3秒前
wll1091完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助LPH采纳,获得10
3秒前
Gzz发布了新的文献求助10
5秒前
鸣笛应助时宜采纳,获得20
6秒前
香蕉觅云应助LJL采纳,获得30
6秒前
7秒前
俊逸若之发布了新的文献求助10
7秒前
WangPeidi完成签到,获得积分10
7秒前
坦率的夜云完成签到,获得积分10
7秒前
wbshore发布了新的文献求助10
8秒前
lyt完成签到,获得积分10
8秒前
凶狠的蓉完成签到,获得积分10
9秒前
9秒前
慕容秋完成签到,获得积分10
9秒前
10秒前
搜集达人应助零零壹采纳,获得10
10秒前
10秒前
Ryang发布了新的文献求助10
13秒前
13秒前
CipherSage应助lyt采纳,获得10
13秒前
马紫婷完成签到,获得积分10
13秒前
安静曼云发布了新的文献求助10
13秒前
13秒前
1111发布了新的文献求助10
14秒前
y12发布了新的文献求助10
14秒前
英姑应助俊逸若之采纳,获得10
15秒前
A砷s发布了新的文献求助10
15秒前
17秒前
呼延曼青发布了新的文献求助10
17秒前
超超完成签到,获得积分10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107457
求助须知:如何正确求助?哪些是违规求助? 3645517
关于积分的说明 11548161
捐赠科研通 3352046
什么是DOI,文献DOI怎么找? 1841723
邀请新用户注册赠送积分活动 908289
科研通“疑难数据库(出版商)”最低求助积分说明 825383