Carbon emission efficiency of 284 cities in China based on machine learning approach: Driving factors and regional heterogeneity

驱动因素 空间异质性 经济地理学 排名(信息检索) 能源消耗 地理 可再生能源 人口 中国 环境经济学 经济 计算机科学 工程类 生态学 社会学 人口学 考古 机器学习 电气工程 生物
作者
Peixue Xing,Yanan Wang,Tao Ye,Ying Sun,Qiao Li,Xiaoyan Li,Meng Li,Wei Chen
出处
期刊:Energy Economics [Elsevier BV]
卷期号:129: 107222-107222 被引量:27
标识
DOI:10.1016/j.eneco.2023.107222
摘要

The rational categorization and assessment of carbon emission efficiency (CEE) and its drivers are crucial for coping with the global climate crisis. To address the bias of univariate modeling and challenge of ignoring the heterogeneity of drivers across cities, this study explores differences between carbon emission drivers across different types of cities and regions to reveal the spatial distribution characteristics of urban CEE and heterogeneity of emission reduction potential. We use a non-radial, non-directional relaxation measure-based directional distance function (SBM-DDF) model to assess the CEE of 284 cities over the period from 2006 to 2020. Machine-learning algorithms are applied to identify city characteristics to determine the effects of city- development types and their characteristic drivers. The results of the driver analysis show that energy consumption, gross regional product, spatial area, and population size are the key factors influencing in the heterogeneity of cities' CEE, with an importance ranking of 0.578, 0.507, 0.432, and 0.418, respectively. The results of for the heterogeneity of the cities' heterogeneity further confirm that energy consumption has the greatest impact on energy-dependent cities (EDCs), economic-development cities (ECDCs), and low-carbon potential cities (LPCs), whereas among the Low-carbon growth cities (LCGs), science, technology, and innovation, urban greening, and electricity consumption play an important roles in promoting greening and low- carbon development, which can help to determine the low- carbon development model for each type of city. Finally, energy consumption affects cities in the central region more than in the eastern and western regions. Based on the results of estimating the heterogeneity of urban carbon- emission rates, we propose customized emission- reduction development pathways to guide urban low-carbon development and formulate carbon- reduction policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助混个毕业采纳,获得10
刚刚
傲娇问晴完成签到,获得积分20
1秒前
上官若男应助戴戴采纳,获得10
2秒前
6秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
若有光发布了新的文献求助10
10秒前
haitun发布了新的文献求助10
13秒前
16秒前
之组长了完成签到 ,获得积分10
19秒前
岁月轮回完成签到,获得积分10
20秒前
贰鸟应助红烧肉吃吃采纳,获得20
20秒前
快乐的寄容完成签到 ,获得积分10
21秒前
haitun完成签到,获得积分10
25秒前
25秒前
木炭完成签到,获得积分10
28秒前
clonidine发布了新的文献求助10
32秒前
jbtjht完成签到,获得积分10
35秒前
卢西奥完成签到,获得积分10
36秒前
37秒前
39秒前
执着夏山完成签到,获得积分10
42秒前
qwert发布了新的文献求助10
43秒前
clonidine完成签到,获得积分10
43秒前
44秒前
粗犷的灵松完成签到 ,获得积分10
47秒前
深情安青应助qwert采纳,获得10
49秒前
dfghjkl发布了新的文献求助10
49秒前
酷波er应助阜睿采纳,获得10
49秒前
50秒前
yangkunmedical完成签到,获得积分10
53秒前
wawaa发布了新的文献求助10
54秒前
雪白丸子完成签到,获得积分10
56秒前
瞳梦完成签到,获得积分10
59秒前
1分钟前
1分钟前
TCXXS发布了新的文献求助10
1分钟前
烟花应助卡卡咧咧采纳,获得10
1分钟前
兴奋的发卡完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778966
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218995
捐赠科研通 3039588
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440