Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging

胰腺导管腺癌 阶段(地层学) 胰腺癌 人工智能 计算机科学 腺癌 放射科 胰腺癌 医学 内科学 癌症 生物 古生物学
作者
Qi Miao,Xuechun Wang,Jingjing Cui,Haoxin Zheng,Yan Xie,Kexin Zhu,Ruimei Chai,Yuanxi Jiang,Dongli Feng,Xin Zhang,Feng Shi,Xiaodong Tan,Guoguang Fan,Keke Liang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108125-108125 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108125
摘要

The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55–67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753–0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助笑点低不言采纳,获得10
4秒前
小星星完成签到 ,获得积分10
5秒前
Aloha完成签到 ,获得积分10
5秒前
7秒前
9秒前
11秒前
内向的绝施完成签到 ,获得积分10
12秒前
爱吃大米发布了新的文献求助10
12秒前
觅云发布了新的文献求助30
13秒前
QingMRI完成签到,获得积分10
13秒前
13秒前
所所应助ShellyHan采纳,获得10
16秒前
酷波er应助ShellyHan采纳,获得10
16秒前
爱吃大米完成签到,获得积分10
17秒前
19秒前
wubobo完成签到,获得积分10
20秒前
lin完成签到,获得积分20
22秒前
树枝完成签到 ,获得积分10
23秒前
abcdefg发布了新的文献求助20
24秒前
星辰大海应助爱吃大米采纳,获得10
24秒前
雪宝宝发布了新的文献求助10
25秒前
28秒前
29秒前
无花果应助滕州笑采纳,获得10
30秒前
無期完成签到 ,获得积分10
31秒前
31秒前
zrs发布了新的文献求助30
33秒前
33秒前
33秒前
雪宝宝完成签到,获得积分10
34秒前
ZW发布了新的文献求助10
35秒前
勤恳冷雪发布了新的文献求助10
35秒前
lianqing完成签到,获得积分10
37秒前
38秒前
39秒前
42秒前
42秒前
43秒前
岁月荣耀发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315