Correcting model misspecification in physics-informed neural networks (PINNs)

物理系统 计算机科学 人工神经网络 不确定度量化 复杂系统 代表(政治) 统计物理学 物理定律 计算模型 理论计算机科学 人工智能 机器学习 物理 量子力学 政治 政治学 法学
作者
Zongren Zou,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:505: 112918-112918 被引量:23
标识
DOI:10.1016/j.jcp.2024.112918
摘要

Data-driven discovery of governing equations in computational science has emerged as a new paradigm for obtaining accurate physical models and as a possible alternative to theoretical derivations. The recently developed physics-informed neural networks (PINNs) have also been employed to learn governing equations given data across diverse scientific disciplines, e.g., in biology and fluid dynamics. Despite the effectiveness of PINNs for discovering governing equations, the physical models encoded in PINNs may be misspecified in complex systems as some of the physical processes may not be fully understood, leading to the poor accuracy of PINN predictions. In this work, we present a general approach to correct the misspecified physical models in PINNs for discovering governing equations, given some sparse and/or noisy data. Specifically, we first encode the assumed physical models, which may be misspecified in PINNs, and then employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data. Due to the expressivity of DNNs, the proposed method is capable of reducing the computational errors caused by the model misspecification and thus enables the applications of PINNs in complex systems where the physical processes are not exactly known. Furthermore, we utilize the Bayesian physics-informed neural networks (B-PINNs) and/or ensemble PINNs to quantify uncertainties arising from noisy and/or gappy data in the discovered governing equations. A series of numerical examples including reaction-diffusion systems and non-Newtonian channel and cavity flows demonstrate that the added DNNs are capable of correcting the model misspecification in PINNs and thus reduce the discrepancy between the physical models encoded in PINNs and the observational data. In addition, the B-PINNs and ensemble PINNs can provide reasonable uncertainty bounds in the discovered physical models, which makes the predictions more reliable. We also demonstrate that we can seamlessly combine the present approach with the symbolic regression to obtain the explicit governing equations upon the training of PINNs. We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
青花溅雨发布了新的文献求助10
3秒前
4秒前
EpiphanyQ发布了新的文献求助10
5秒前
6秒前
wlq发布了新的文献求助10
6秒前
7秒前
Jasper应助hwezhu采纳,获得10
9秒前
h胡发布了新的文献求助30
9秒前
健壮不斜发布了新的文献求助10
10秒前
岩下松风完成签到,获得积分10
11秒前
阿辉完成签到,获得积分10
15秒前
18秒前
EpiphanyQ完成签到,获得积分10
21秒前
wqb196完成签到,获得积分10
22秒前
h胡完成签到,获得积分10
22秒前
shuaishuyi完成签到,获得积分10
22秒前
hwezhu发布了新的文献求助10
22秒前
24秒前
科研通AI5应助wanhe采纳,获得100
27秒前
wqb196发布了新的文献求助10
28秒前
自由的代丝完成签到 ,获得积分10
28秒前
一个有点长的序完成签到 ,获得积分10
30秒前
FashionBoy应助wlq采纳,获得10
31秒前
花花521完成签到,获得积分10
31秒前
西瓜霜完成签到,获得积分10
35秒前
Dxy-TOFA完成签到,获得积分10
36秒前
小密母完成签到,获得积分10
38秒前
赘婿应助西瓜霜采纳,获得10
39秒前
领导范儿应助becky采纳,获得30
40秒前
NexusExplorer应助科研小白采纳,获得10
41秒前
43秒前
阁楼上de猫完成签到,获得积分10
43秒前
chloe完成签到,获得积分10
43秒前
49秒前
Hello应助薛定谔的猫采纳,获得10
50秒前
彩色的德地完成签到,获得积分10
54秒前
姜小时发布了新的文献求助10
54秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649