Deep Learning in Single-cell Analysis

深度学习 机器学习 管道(软件) 数据科学 领域(数学) 计算机科学 人工智能 数学 纯数学 程序设计语言
作者
Dylan Molho,Jiayuan Ding,Wenzhuo Tang,Zhaoheng Li,Hongzhi Wen,Yixin Wang,Julian Venegas,Wei Jin,Renming Liu,Runze Su,Patrick Danaher,Robert Yang,Yu L. Lei,Yuying Xie,Jiliang Tang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (3): 1-62 被引量:6
标识
DOI:10.1145/3641284
摘要

Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high dimensional, sparse, and heterogeneous and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助YGTRECE采纳,获得10
2秒前
赘婿应助亦雪采纳,获得10
3秒前
wrr应助Zhidong Wei采纳,获得10
3秒前
爱学习的瑞瑞子完成签到 ,获得积分10
5秒前
宁为树发布了新的文献求助10
5秒前
5秒前
10秒前
10秒前
chiaoyin999应助潇潇雨歇采纳,获得10
12秒前
13秒前
我是老大应助李哈哈采纳,获得10
13秒前
14秒前
14秒前
YGTRECE发布了新的文献求助10
15秒前
亦雪发布了新的文献求助10
16秒前
rye227应助张文博采纳,获得20
19秒前
wlf发布了新的文献求助10
19秒前
19秒前
标致小翠完成签到,获得积分10
20秒前
20秒前
xiao_J发布了新的文献求助10
21秒前
YGTRECE完成签到,获得积分20
21秒前
22秒前
chenn完成签到 ,获得积分10
23秒前
24秒前
葱葱发布了新的文献求助10
27秒前
飞飞飞飞飞完成签到,获得积分10
28秒前
nixx发布了新的文献求助10
28秒前
研友_VZG7GZ应助zilhua采纳,获得10
28秒前
ethan2801完成签到,获得积分10
29秒前
xujy完成签到,获得积分10
29秒前
共享精神应助wlf采纳,获得10
30秒前
36秒前
共享精神应助曾梦采纳,获得10
37秒前
莫道桑榆完成签到,获得积分10
37秒前
WJ完成签到,获得积分10
38秒前
Auston_zhong应助王恒采纳,获得10
38秒前
喂喂喂威完成签到 ,获得积分10
39秒前
mcl发布了新的文献求助10
39秒前
皮皮发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339