过度拟合
计算机科学
人工智能
注释
分类器(UML)
探测器
太赫兹辐射
目标检测
单发
计算机视觉
领域(数学分析)
弹丸
对象(语法)
班级(哲学)
一次性
模式识别(心理学)
光电子学
材料科学
人工神经网络
冶金
机械工程
电信
数学分析
物理
数学
光学
工程类
作者
Ran Cheng,Stepan Lucyszyn
标识
DOI:10.1038/s41598-024-53045-9
摘要
Abstract In this research, we explore the few-shot object detection application for identifying concealed objects in sub-terahertz security images, using fine-tuning based frameworks. To adapt these machine learning frameworks for the (sub-)terahertz domain, we propose an innovative pseudo-annotation method to augment the object detector by sourcing high-quality training samples from unlabeled images. This approach employs multiple one-class detectors coupled with a fine-grained classifier, trained on supporting thermal-infrared images, to prevent overfitting. Consequently, our approach enhances the model’s ability to detect challenging objects (e.g., 3D-printed guns and ceramic knives) when few-shot training examples are available, especially in the real-world scenario where images of concealed dangerous items are scarce.
科研通智能强力驱动
Strongly Powered by AbleSci AI