亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GeoCluster: Enhancing Visual Place Recognition in Spatial Domain on Aerial Vehicle Platforms

稳健性(进化) 计算机科学 人工智能 航空影像 聚类分析 一致性(知识库) 计算机视觉 特征(语言学) 可视化 模式识别(心理学) 图像(数学) 生物化学 化学 语言学 哲学 基因
作者
Chao Chen,Mengfan He,Jun Wang,Ziyang Meng
出处
期刊:IEEE robotics and automation letters 卷期号:9 (3): 3013-3020 被引量:1
标识
DOI:10.1109/lra.2024.3363536
摘要

Visual Place Recognition (VPR) is a critical technology for achieving robust long-term visual geo-localization. During the past few years, VPR research mainly focused on ground-based platforms in the street-level captured scenes with deep learning methods (e.g. NetVLAD, GeM), but little attention was paid to the VPR task on aerial vehicles. The algorithms and models designed for ground-based platforms are always directly applied to the aerial VPR problem. However, the viewpoint variance on Unmanned Aerial Vehicles (UAV) is much larger than the ground-based platforms. Due to the sparse distribution of aerial image features, when the viewpoint of the camera changes, the features of the query image are largely inconsistent with the descriptors in the database, which results in the failures of image retrieval and visual geo-localization. In this letter, we propose an aerial VPR enhancement module called GeoCluster , which presents a feature aggregation method using spatial clustering information to improve the robustness and consistency of the global descriptors for UAV-captured frames. Moreover, it can be applied to any NetVLAD-based VPR method and boost the pre-trained model without any further training process. By integrating GeoCluster into an existing state-of-the-art localization method, we can achieve about 10% improvement for aerial image retrieval tasks and have more accurate and robust geo-localization results. To foster future research, we make the code and datasets in this work publicly available for any researcher at https://github.com/cbbhuxx/GeoCluster.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟消云散发布了新的文献求助10
9秒前
gszy1975完成签到,获得积分10
23秒前
1分钟前
无花果应助烟消云散采纳,获得10
2分钟前
王婧萱萱萱完成签到 ,获得积分10
2分钟前
Ava应助肆陆采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
顺利的小蚂蚁完成签到,获得积分10
3分钟前
肆陆发布了新的文献求助10
3分钟前
13656479046发布了新的文献求助10
3分钟前
3分钟前
烟消云散发布了新的文献求助10
3分钟前
4分钟前
丘比特应助我想开花了采纳,获得10
4分钟前
坚强的广山完成签到,获得积分0
4分钟前
4分钟前
4分钟前
李爱国应助13656479046采纳,获得10
5分钟前
5分钟前
Akim应助彩色幼南采纳,获得10
5分钟前
xcltzh1296完成签到,获得积分10
6分钟前
Leon应助xu采纳,获得20
6分钟前
大个应助烟消云散采纳,获得10
6分钟前
webmaster完成签到,获得积分10
7分钟前
7分钟前
MR VET发布了新的文献求助10
7分钟前
MR VET完成签到,获得积分20
7分钟前
7分钟前
damturexu发布了新的文献求助10
7分钟前
香蕉觅云应助高高元柏采纳,获得10
7分钟前
damturexu完成签到,获得积分10
7分钟前
7分钟前
烟消云散发布了新的文献求助10
8分钟前
NexusExplorer应助烟消云散采纳,获得10
8分钟前
在路上完成签到 ,获得积分0
8分钟前
9分钟前
andrele发布了新的文献求助10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10282015
捐赠科研通 3053532
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468