亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange完成签到 ,获得积分10
1秒前
16秒前
shuwu完成签到,获得积分10
26秒前
英姑应助转转王转转采纳,获得10
43秒前
汉堡包应助小天采纳,获得10
51秒前
馅饼完成签到,获得积分10
55秒前
哇呀呀完成签到 ,获得积分0
1分钟前
skycause完成签到,获得积分10
1分钟前
1分钟前
QQQ发布了新的文献求助10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
三石完成签到 ,获得积分10
1分钟前
QQQ完成签到,获得积分10
1分钟前
无极微光应助不吃鸡蛋采纳,获得20
1分钟前
2分钟前
Ericlee发布了新的文献求助10
2分钟前
香蕉觅云应助Joanna采纳,获得10
2分钟前
Ericlee完成签到,获得积分20
2分钟前
JL完成签到,获得积分10
2分钟前
JamesPei应助djbj2022采纳,获得80
2分钟前
彭蓬完成签到,获得积分10
2分钟前
完美世界应助dcy采纳,获得10
2分钟前
彭蓬发布了新的文献求助10
2分钟前
2分钟前
2分钟前
dcy发布了新的文献求助10
2分钟前
可爱初瑶发布了新的文献求助10
3分钟前
LC发布了新的文献求助10
3分钟前
Monicadd完成签到 ,获得积分10
3分钟前
LC完成签到,获得积分10
3分钟前
3分钟前
羞涩的傲菡完成签到,获得积分10
3分钟前
SciGPT应助可爱初瑶采纳,获得10
3分钟前
沉静丹寒完成签到,获得积分20
3分钟前
djbj2022发布了新的文献求助80
3分钟前
3分钟前
123关闭了123文献求助
3分钟前
Joanna发布了新的文献求助10
3分钟前
冷静新烟完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459061
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297199
捐赠科研通 4489949
什么是DOI,文献DOI怎么找? 2459427
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424578