材料科学
动力学蒙特卡罗方法
热重分析
密度泛函理论
氧气
Crystal(编程语言)
化学物理
晶体结构
活化能
热氧化
分压
化学工程
物理化学
结晶学
蒙特卡罗方法
计算化学
化学
氧化物
冶金
有机化学
统计
数学
计算机科学
程序设计语言
工程类
作者
Zhengang Zhang,Jisen Wu,Quan Zhu,Jianyi Ma
出处
期刊:Small
[Wiley]
日期:2023-12-11
卷期号:20 (19)
被引量:2
标识
DOI:10.1002/smll.202308718
摘要
To date, the oxidation behavior of crystal materials is not fully understood; additional research is needed to understand the oxidation of materials. Herein, density functional theory (DFT) calculations and a 3D kinetic Monte Carlo (KMC) model are used to investigate the infiltration and diffusion behaviors of oxygen atoms within the crystal. Oxygen molecules readily adsorbes on crystal surfaces of the material and rapidly dissociates, verified by both first-principles calculations and energy-dispersive spectrometer (EDS) results. The infiltration ability of oxygen atoms into the inner crystal layers is affected by the surrounding oxygen atom, lattice compactness, and other factors. Energy-barrier calculations show that crystal thin/dense layers have significant effects on the crystal oxidation process, so high-pressure technology is used to investigate this correlation experimentally. KMC calculations and thermogravimetric analyses (TGA) show the infiltration behavior of oxygen atoms in the main crystal plane (211) toward the inner layers has the highest proportion to the actual high-temperature oxidation behavior of the title material. The results of both the KMC calculations and thermal experiments show the material peeled off upon further oxidation, which accelerates oxidation. At the same time, high-pressure treatment increases the oxidation resistance of materials at lower temperatures (<600 °C).
科研通智能强力驱动
Strongly Powered by AbleSci AI