Accuracy of manual and artificial intelligence‐based superimposition of cone‐beam computed tomography with digital scan data, utilizing an implant planning software: A randomized clinical study

叠加 锥束ct 软件 放射治疗计划 医学物理学 计算机断层摄影术 计算机科学 锥束ct 植入 人工智能 计算机视觉 医学 放射科 放射治疗 外科 程序设计语言
作者
Panagiotis Ntovas,Laurent Marchand,Matthew Finkelman,Marta Revilla‐León,Wael Att
出处
期刊:Clinical Oral Implants Research [Wiley]
被引量:6
标识
DOI:10.1111/clr.14313
摘要

Abstract Objectives To investigate the accuracy of conventional and automatic artificial intelligence (AI)‐based registration of cone‐beam computed tomography (CBCT) with intraoral scans and to evaluate the impact of user's experience, restoration artifact, number of missing teeth, and free‐ended edentulous area. Materials and Methods Three initial registrations were performed for each of the 150 randomly selected patients, in an implant planning software: one from an experienced user, one from an inexperienced operator, and one from a randomly selected post‐graduate student of implant dentistry. Six more registrations were performed for each dataset by the experienced clinician: implementing a manual or an automatic refinement, selecting 3 small or 3 large in‐diameter surface areas and using multiple small or multiple large in‐diameter surface areas. Finally, an automatic AI‐driven registration was performed, using the AI tools that were integrated into the utilized implant planning software. The accuracy between each type of registration was measured using linear measurements between anatomical landmarks in metrology software. Results Fully automatic‐based AI registration was not significantly different from the conventional methods tested for patients without restorations. In the presence of multiple restoration artifacts, user's experience was important for an accurate registration. Registrations' accuracy was affected by the number of free‐ended edentulous areas, but not by the absolute number of missing teeth ( p < .0083). Conclusions In the absence of imaging artifacts, automated AI‐based registration of CBCT data and model scan data can be as accurate as conventional superimposition methods. The number and size of selected superimposition areas should be individually chosen depending on each clinical situation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYY发布了新的文献求助10
3秒前
4秒前
5秒前
yue发布了新的文献求助10
9秒前
9秒前
10秒前
cccc发布了新的文献求助10
12秒前
12秒前
chengche完成签到,获得积分10
14秒前
烟花应助我不是阿呆采纳,获得10
14秒前
chen测发布了新的文献求助10
15秒前
Xdz完成签到 ,获得积分10
15秒前
cccc完成签到,获得积分10
17秒前
Haibrar完成签到 ,获得积分10
20秒前
22秒前
科研通AI5应助chengche采纳,获得10
23秒前
甜蜜唯雪完成签到,获得积分10
25秒前
26秒前
pluto应助雨水采纳,获得10
29秒前
倪好完成签到,获得积分10
30秒前
科目三应助甜蜜唯雪采纳,获得10
32秒前
yue完成签到,获得积分10
36秒前
WSGQT完成签到 ,获得积分10
37秒前
42秒前
43秒前
香蕉觅云应助郁金香采纳,获得10
44秒前
温暖涫完成签到 ,获得积分10
46秒前
yorkin完成签到 ,获得积分10
46秒前
叶映安发布了新的文献求助10
47秒前
48秒前
土土驳回了英姑应助
48秒前
49秒前
53秒前
科目三应助fishhh采纳,获得10
53秒前
53秒前
无花果应助Jasper采纳,获得10
58秒前
pluto应助如意的书南采纳,获得30
58秒前
HL发布了新的文献求助10
58秒前
pluto应助如意的书南采纳,获得10
58秒前
bkagyin应助如意的书南采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385