FedCrow: Federated-Learning-Based Data Privacy Preservation in Crowd Sensing

计算机科学 互联网隐私 计算机安全
作者
Jun Ma,Long Chen,Jian Xu,Yaoxuan Yuan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 4788-4788
标识
DOI:10.3390/app14114788
摘要

In the process of completing large-scale and fine-grained sensing tasks for the new generation of crowd-sensing systems, the role of analysis, reasoning, and decision making based on artificial intelligence has become indispensable. Mobile crowd sensing, which is an open system reliant on the broad participation of mobile intelligent terminal devices in data sensing and computation, poses a significant risk of user privacy data leakage. To mitigate the data security threats that arise from malicious users in federated learning and the constraints of end devices in crowd-sensing applications, which are unsuitable for high computational overheads associated with traditional cryptographic security mechanisms, we propose FedCrow, which is a federated-learning-based approach for protecting crowd-sensing data that integrates federated learning with crowd sensing. FedCrow enables the training of artificial intelligence models on multiple user devices without the need to upload user data to a central server, thus mitigating the risk of crowd-sensing user data leakage. To address security vulnerabilities in the model data during the interaction process in federated learning, the system employs encryption methods suitable for crowd-sensing applications to ensure secure data transmission during the training process, thereby establishing a secure federated-learning framework for protecting crowd-sensing data. To combat potential malicious users in federated learning, a legitimate user identification method based on the user contribution level was designed using the gradient similarity principle. By filtering out malicious users, the system reduces the threat of attacks, thereby enhancing the system accuracy and security. Through various attack experiments, the system’s ability to defend against malicious user attacks was validated. The experimental results demonstrate the method’s effectiveness in countering common attacks in federated learning. Additionally, through comparative experiments, suitable encryption methods based on the size of the data in crowd-sensing applications were identified to effectively protect the data security during transmission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Arthur Zhu完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
愉快的犀牛完成签到 ,获得积分10
1秒前
1秒前
义气的三德完成签到,获得积分10
2秒前
西西弗斯完成签到,获得积分10
2秒前
FOX完成签到,获得积分10
2秒前
无限雨南完成签到,获得积分10
3秒前
细心可乐完成签到,获得积分10
3秒前
大气乐儿完成签到,获得积分10
3秒前
啦啦啦完成签到,获得积分10
3秒前
4秒前
4秒前
努力搬砖的小胡完成签到,获得积分10
4秒前
SYLH应助Wendy采纳,获得10
4秒前
周周发布了新的文献求助10
5秒前
Frain完成签到,获得积分10
5秒前
qhcaywy完成签到,获得积分10
6秒前
6秒前
情怀应助peiqi佩奇采纳,获得10
6秒前
顺利毕业就好完成签到 ,获得积分10
6秒前
朴实子轩完成签到,获得积分10
6秒前
丘比特应助结实的问寒采纳,获得10
6秒前
whz发布了新的文献求助10
6秒前
失眠醉易应助西西弗斯采纳,获得20
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
wanci应助JJ采纳,获得10
9秒前
冰魂应助风趣飞柏采纳,获得10
9秒前
机智闭月发布了新的文献求助10
10秒前
Fe_001完成签到 ,获得积分10
10秒前
歆兴欣完成签到 ,获得积分10
10秒前
10秒前
Yuan完成签到,获得积分10
11秒前
芝麻球ii完成签到,获得积分10
11秒前
十里长亭完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781