SA-LSTM: A Trajectory Prediction Model for Complex off-road Multi-agent Systems Considering Situation Awareness Based on Risk Field

计算机科学 弹道 背景(考古学) 过程(计算) 人工智能 联营 机器学习 任务(项目管理) 领域(数学) 残余物 基线(sea) 期限(时间) 算法 工程类 量子力学 生物 海洋学 操作系统 数学 物理 地质学 古生物学 系统工程 纯数学 天文
作者
Yuning Wang,Jiahao Wang,Junkai Jiang,Shaobing Xu,Jianqiang Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:7
标识
DOI:10.1109/tvt.2023.3287227
摘要

Autonomous Vehicles have wide-ranging applications in off-road environments. Off-road vehicular scenes can be abstracted as multi-agent systems, and trajectory prediction is a critical process for context understanding. Agents compete and cooperate other to pursue their individual targets, which makes trajectories complicated and changeable. Hence, in order to derive precise predictions, it is necessary to reason how agents interact with each other. However, current prediction algorithms lack a unified and appropriate method for spatiotemporal reasoning. Previous methods mainly rely on vehicle-lane constraints to capture features, which is only applicable in structured environments. To address this issue, this paper proposes a novel off-road multi-agent trajectory prediction framework called SA-LSTM. This framework comprises situation awareness extraction and Long Short Term Memory (LSTM) prediction backbones. Based on the analysis of agents' movement patterns, we decompose actions into the maintenance of previous movements and the strategy variations in response to environment situations. In situation awareness extraction, risk field and pooling layers are applied to filter interpretable awareness. As for prediction backbones, proper LSTM networks are selected to adapt the task features. In short-term predictions, a residual mechanism is used to preserve physical inertia, while for long-term predictions autoregression process is applied. We also establish a multi-agent dataset based on human-manipulated chase-and-run tasks to train and validate the performance of SA-LSTM. Experiments show that compared with the best baseline model at each prediction length, SA-LSTM reduces the mean absolute error by 7.27%, 32.99%, and 28.07% at the prediction time of 0.6, 3.0, and 6.0 seconds, respectively, proving better prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爆米花应助zlw采纳,获得10
1秒前
zh123完成签到,获得积分10
2秒前
3秒前
Georges-09完成签到,获得积分10
4秒前
默默灭绝发布了新的文献求助10
5秒前
提拉米苏完成签到,获得积分10
5秒前
rye发布了新的文献求助10
7秒前
isukini完成签到,获得积分10
7秒前
桑葚啊发布了新的文献求助10
8秒前
9秒前
11秒前
盛夏如花发布了新的文献求助20
12秒前
一品真意完成签到,获得积分10
15秒前
nnn发布了新的文献求助10
15秒前
16秒前
罗丹丹完成签到,获得积分10
16秒前
林松发布了新的文献求助10
21秒前
菲菲完成签到,获得积分10
23秒前
Gesj应助留胡子的语兰采纳,获得10
25秒前
搜集达人应助111采纳,获得10
25秒前
qaw关闭了qaw文献求助
26秒前
深情安青应助山山而川采纳,获得10
27秒前
27秒前
白色城堡完成签到,获得积分20
29秒前
范玉平完成签到,获得积分0
30秒前
丘比特应助郑郑采纳,获得10
31秒前
田様应助zjh采纳,获得10
32秒前
33秒前
周周南完成签到 ,获得积分10
33秒前
鹅逗发布了新的文献求助10
33秒前
33秒前
zz发布了新的文献求助10
38秒前
39秒前
39秒前
燕子完成签到,获得积分10
39秒前
嗒嗒小医生完成签到,获得积分10
39秒前
哎呀发布了新的文献求助10
39秒前
郑郑完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782317
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233193
捐赠科研通 3042700
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876