亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS‐CoV‐2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics

药效团 虚拟筛选 对接(动物) 计算生物学 药物发现 蛋白酵素 蛋白酶 化学 小分子 分子动力学 分子力学 生物 生物化学 医学 计算化学 护理部
作者
Mohanad A. Mahgoub,Ahmed Alnaem,Mohammed Fadlelmola,Mazin Abo-idris,Alaa A. Makki,Abdelgadir A. Abdelgadir,Abdulrahim A. Alzain
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:41 (14): 6775-6788 被引量:3
标识
DOI:10.1080/07391102.2022.2112080
摘要

The pandemic of coronavirus disease is caused by the SARS-CoV-2 which is considered a global health issue. The main protease of COVID 19 (Mpro) has an important role in viral multiplication in the host cell. Inhibiting Mpro is a novel approach to drug discovery and development. Also, transmembrane serine proteases (TMPSS2) facilitate viral activation by cleavage S glycoproteins, thus considered one of the essential host factors for COVID-19 pathogenicity. Computational tools were widely used to reduce time and costs in search of effective inhibitors. A chemical library that contains over two million molecules was virtually screened against TMPRSS2. Also, XP docking for the top hits was screened against (Mpro) to identify dual-target inhibitors. Furthermore, MM-GBSA and predictive ADMET were performed. The top hits were further studied through density functional theory (DFT) calculation and showed good binding to the active sites. Moreover, molecular dynamics (MD) for the top hits were performed which gave information about the stability of the protein-ligand complex during the simulation period. This study has led to the discovery of potential dual-target inhibitors Z751959696, Z751954014, and Z56784282 for COVID-19 with acceptable pharmacokinetic properties. The outcome of this study can participate in the development of novel inhibitors to defeat SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
he发布了新的文献求助10
19秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CodeCraft应助he采纳,获得10
2分钟前
丁老三完成签到 ,获得积分10
2分钟前
ruirui_love完成签到,获得积分10
2分钟前
魏青瑜应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
fabricio10发布了新的文献求助10
3分钟前
he发布了新的文献求助10
3分钟前
3分钟前
fabricio10完成签到,获得积分10
3分钟前
故槿完成签到 ,获得积分10
3分钟前
李志强发布了新的文献求助10
3分钟前
浮游应助发文章采纳,获得60
3分钟前
Lucas应助he采纳,获得10
3分钟前
李志强完成签到,获得积分10
3分钟前
zzgpku完成签到,获得积分0
4分钟前
烨枫晨曦完成签到,获得积分10
4分钟前
5分钟前
5分钟前
he发布了新的文献求助10
5分钟前
桐桐应助he采纳,获得10
5分钟前
Viiigo完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
小船发布了新的文献求助10
7分钟前
7分钟前
小船完成签到,获得积分20
7分钟前
he发布了新的文献求助10
7分钟前
Ethan完成签到,获得积分10
7分钟前
gszy1975完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
脑洞疼应助he采纳,获得10
7分钟前
半喇柯基完成签到 ,获得积分10
7分钟前
111完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470231
求助须知:如何正确求助?哪些是违规求助? 4573100
关于积分的说明 14338046
捐赠科研通 4500118
什么是DOI,文献DOI怎么找? 2465578
邀请新用户注册赠送积分活动 1453923
关于科研通互助平台的介绍 1428539