作者
Chao Lin,Jianming Xing,Ziping Jiang,Liqun Sun,Yongjian Gao,Shuo Yang,Dongxu Wang,Ning Yin
摘要
Liver fibrosis is a serious health problem and may lead to advanced liver cirrhosis and hepatocellular carcinoma if left untreated. In this study, a mouse liver fibrosis model was established by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and tanshinone IIA. Salvia miltiorrhiza Bunge extract, shown to play a regulatory role in liver fibrosis, was administered to study its effect on the expression of COL1A1. Mice were divided into 3 groups, control (Con), model (DDC), and drug administration (DDC-Tan) groups, and were subjected to the respective treatment for 2 months. Following treatment, the degree of liver fibrosis in mice in each group was determined. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and albumin levels in mice were determined using enzyme-linked immunosorbent assay (ELISA). Mouse liver tissues were used for hematoxylin-eosin and immunohistochemical staining. ELISA results showed that treatment with tanshinone IIA inhibited the expression of ALT, AST, and bilirubin in the DDC-Tan group compared with the DDC group. Hematoxylin-eosin, Sirius red, and α-SMA staining showed that liver injury was delayed in the DDC-Tan group. Immunohistochemistry, quantitative polymerase chain reaction, and Western blot results showed that COL1A1 expression was reduced after tanshinone IIA treatment. Moreover, the bioinformatic analysis indicated that let-7a targets COL1A1, and H19 regulates let-7a expression. The quantitative polymerase chain reaction and Western blot results confirmed that the H19/let-7a axis regulates COL1A1 expression. Thus, tanshinone IIA inhibited liver fibrosis by regulating COL1A1 expression through the H19/let-7a axis in mice.