Artificial intelligence–based method for the rapid detection of fish parasites (Ichthyophthirius multifiliis, Gyrodactylus kobayashii, and Argulus japonicus)

多毛鱼 生物 旋指虫 渔业 人工智能 模式识别(心理学) 单殖吸虫 计算机科学
作者
Jiadong Li,Zirui Lian,Zhelin Wu,Lihua Zeng,Liangliang Mu,Ye Yuan,Hao Bai,Zheng Guo,Kangsen Mai,Tu Xiao,Jianmin Ye
出处
期刊:Aquaculture [Elsevier BV]
卷期号:563: 738790-738790 被引量:12
标识
DOI:10.1016/j.aquaculture.2022.738790
摘要

Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites, representative species of Protozoa, Platyhelminthes and Arthropoda, which cause serious economic losses in aquatic industry. In this research, a visual system that can rapidly detect and count these three kinds of parasites was realized based on a one-stage object detection deep learning algorithm YOLOv4 through python. Firstly, we made a dataset of parasites containing 27,930 images. Secondly, weights of the trained fish lice model were applied as the pre-training weights, and network (backbone indeed) frozen was also applied to obtaining a good performance predicting model with less time and higher accuracy, which showed that Transfer Learning could meet the training requirement for detecting these three fish parasites by using self-made data set. In addition, by comparison of different one-stage algorithms YOLOv4‑tiny, YOLOv3, et al., the best model with a total average accuracy (mAP) of 95.41% was achieved by the YOLOv4. Finally, this model could quickly detect and count mixed infected pictures with a speed of 0.13 s per image measured in GPU time. Further, a visual prediction and counting system equipped with the YOLOv4 was developed by using PyQt which is convenient for real-time video detection. A simple drug-giving system equipped with Praziquantel was also developed based on the thought of the Internet of Things in this study and after using a drug, the number of monogeneans infecting gold fish was reduced. At the same time, we modified YOLOv4 PANet by adding additional detection layers, which achieved greater performance of detecting smaller targets like Monogenea. Together, this Artificial intelligence–based method could realize the rapid detection and diagnosis of fish parasites in images and video.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大美美完成签到,获得积分10
1秒前
3秒前
4秒前
5秒前
CJW完成签到 ,获得积分10
5秒前
小巫完成签到,获得积分10
6秒前
Enri发布了新的文献求助10
6秒前
7秒前
LEETHEO发布了新的文献求助10
9秒前
11秒前
11秒前
王粒完成签到,获得积分10
11秒前
周周发布了新的文献求助10
12秒前
12秒前
APPLE发布了新的文献求助10
14秒前
14秒前
红烧茄子完成签到,获得积分10
15秒前
xRuri发布了新的文献求助10
16秒前
ych发布了新的文献求助10
17秒前
轻松连虎发布了新的文献求助10
17秒前
m赤子心完成签到 ,获得积分10
18秒前
chinh完成签到,获得积分10
20秒前
我不到啊发布了新的文献求助20
21秒前
21秒前
科研通AI5应助周周采纳,获得10
22秒前
26秒前
yang发布了新的文献求助10
26秒前
华仔应助xRuri采纳,获得10
27秒前
iwhsgfes完成签到,获得积分10
28秒前
吴蒙发布了新的文献求助10
29秒前
陈俊雷完成签到 ,获得积分10
32秒前
爆米花应助吴蒙采纳,获得10
34秒前
35秒前
今天摸鱼了嘛完成签到,获得积分10
35秒前
38秒前
alex_zhao完成签到,获得积分10
40秒前
40秒前
珮2021发布了新的文献求助10
44秒前
万能图书馆应助yang采纳,获得10
45秒前
学术小王子完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783167
求助须知:如何正确求助?哪些是违规求助? 3328504
关于积分的说明 10236746
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670607
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119