亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence for context-aware surgical guidance in complex robot-assisted oncological procedures: An exploratory feasibility study

人工智能 分割 计算机科学 背景(考古学) 计算机视觉 解剖(医学) 机器人 模式识别(心理学) 图像分割 交叉口(航空) 医学 外科 地图学 生物 古生物学 地理
作者
Fiona R. Kolbinger,Sebastian Bodenstedt,Matthias Carstens,Stefan Leger,Stefanie Krell,Franziska M. Rinner,Thomas P. Nielen,Johanna Kirchberg,Johannes Fritzmann,Jürgen Weitz,Marius Distler,Stefanie Speidel
出处
期刊:Ejso [Elsevier]
卷期号:50 (12): 106996-106996 被引量:29
标识
DOI:10.1016/j.ejso.2023.106996
摘要

Complex oncological procedures pose various surgical challenges including dissection in distinct tissue planes and preservation of vulnerable anatomical structures throughout different surgical phases. In rectal surgery, violation of dissection planes increases the risk of local recurrence and autonomous nerve damage resulting in incontinence and sexual dysfunction. This work explores the feasibility of phase recognition and target structure segmentation in robot-assisted rectal resection (RARR) using machine learning.A total of 57 RARR were recorded and subsets of these were annotated with respect to surgical phases and exact locations of target structures (anatomical structures, tissue types, static structures, and dissection areas). For surgical phase recognition, three machine learning models were trained: LSTM, MSTCN, and Trans-SVNet. Based on pixel-wise annotations of target structures in 9037 images, individual segmentation models based on DeepLabv3 were trained. Model performance was evaluated using F1 score, Intersection-over-Union (IoU), accuracy, precision, recall, and specificity.The best results for phase recognition were achieved with the MSTCN model (F1 score: 0.82 ± 0.01, accuracy: 0.84 ± 0.03). Mean IoUs for target structure segmentation ranged from 0.14 ± 0.22 to 0.80 ± 0.14 for organs and tissue types and from 0.11 ± 0.11 to 0.44 ± 0.30 for dissection areas. Image quality, distorting factors (i.e. blood, smoke), and technical challenges (i.e. lack of depth perception) considerably impacted segmentation performance.Machine learning-based phase recognition and segmentation of selected target structures are feasible in RARR. In the future, such functionalities could be integrated into a context-aware surgical guidance system for rectal surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Sean完成签到 ,获得积分10
8秒前
10秒前
coco发布了新的文献求助20
16秒前
39秒前
45秒前
46秒前
46秒前
serein发布了新的文献求助10
49秒前
55秒前
今后应助保持微笑采纳,获得10
59秒前
无花果应助serein采纳,获得10
1分钟前
kakamua完成签到,获得积分10
1分钟前
1分钟前
大牛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
白糖完成签到,获得积分10
1分钟前
保持微笑发布了新的文献求助10
1分钟前
白糖发布了新的文献求助10
1分钟前
保持微笑完成签到,获得积分10
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
慕青应助Cherry采纳,获得10
1分钟前
王大壮发布了新的文献求助10
1分钟前
1分钟前
上官若男应助fang采纳,获得10
1分钟前
佳佳完成签到,获得积分10
1分钟前
1分钟前
饼子发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
饼子完成签到,获得积分10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598519
关于积分的说明 14464322
捐赠科研通 4532126
什么是DOI,文献DOI怎么找? 2483850
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439707