亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task learning for arousal and sleep stage detection using fully convolutional networks

唤醒 计算机科学 任务(项目管理) 卷积神经网络 分割 睡眠(系统调用) 召回 睡眠阶段 深度学习 人工智能 认知心理学 模式识别(心理学) 语音识别 机器学习 心理学 多导睡眠图 脑电图 精神科 神经科学 操作系统 经济 管理
作者
Hasan Zan,Abdulnasır Yildiz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056034-056034 被引量:5
标识
DOI:10.1088/1741-2552/acfe3a
摘要

Objective.Sleep is a critical physiological process that plays a vital role in maintaining physical and mental health. Accurate detection of arousals and sleep stages is essential for the diagnosis of sleep disorders, as frequent and excessive occurrences of arousals disrupt sleep stage patterns and lead to poor sleep quality, negatively impacting physical and mental health. Polysomnography is a traditional method for arousal and sleep stage detection that is time-consuming and prone to high variability among experts.Approach. In this paper, we propose a novel multi-task learning approach for arousal and sleep stage detection using fully convolutional neural networks. Our model, FullSleepNet, accepts a full-night single-channel EEG signal as input and produces segmentation masks for arousal and sleep stage labels. FullSleepNet comprises four modules: a convolutional module to extract local features, a recurrent module to capture long-range dependencies, an attention mechanism to focus on relevant parts of the input, and a segmentation module to output final predictions.Main results.By unifying the two interrelated tasks as segmentation problems and employing a multi-task learning approach, FullSleepNet achieves state-of-the-art performance for arousal detection with an area under the precision-recall curve of 0.70 on Sleep Heart Health Study and Multi-Ethnic Study of Atherosclerosis datasets. For sleep stage classification, FullSleepNet obtains comparable performance on both datasets, achieving an accuracy of 0.88 and an F1-score of 0.80 on the former and an accuracy of 0.83 and an F1-score of 0.76 on the latter.Significance. Our results demonstrate that FullSleepNet offers improved practicality, efficiency, and accuracy for the detection of arousal and classification of sleep stages using raw EEG signals as input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
4秒前
壹玖一陆完成签到,获得积分20
6秒前
6秒前
8秒前
豆都发布了新的文献求助10
8秒前
耳东陈完成签到 ,获得积分10
9秒前
壹玖一陆发布了新的文献求助10
10秒前
科研通AI6应助壹玖一陆采纳,获得10
15秒前
17秒前
我是老大应助wuzihao采纳,获得10
17秒前
max完成签到,获得积分10
17秒前
19秒前
24秒前
CodeCraft应助传统的书包采纳,获得30
27秒前
Evaporate发布了新的文献求助10
27秒前
27秒前
32秒前
小王完成签到 ,获得积分10
33秒前
浮游应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
37秒前
ding应助科研通管家采纳,获得10
37秒前
浮浮世世应助科研通管家采纳,获得30
37秒前
浮游应助科研通管家采纳,获得10
37秒前
情怀应助科研通管家采纳,获得10
37秒前
tdtk发布了新的文献求助10
37秒前
张步完成签到 ,获得积分10
38秒前
39秒前
42秒前
老老实实好好活着完成签到,获得积分10
42秒前
46秒前
zozox完成签到 ,获得积分10
49秒前
李健的小迷弟应助nanne采纳,获得30
49秒前
50秒前
gzwhh发布了新的文献求助30
55秒前
酷波er应助tdtk采纳,获得10
56秒前
57秒前
JamesPei应助zorro3574采纳,获得10
58秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490