Integrated triangular fuzzy KE-GRA-TOPSIS method for dynamic ranking of products of customers’ fuzzy Kansei preferences

感性 托普西斯 理想溶液 灰色关联分析 模糊逻辑 排名(信息检索) 计算机科学 偏爱 秩(图论) 相似性(几何) 顾客满意度 人工智能 数据挖掘 数学 运筹学 营销 统计 业务 物理 图像(数学) 组合数学 热力学
作者
Dashuai Liu,Jie Zhang,Chenlu Wang,Weilin Ci,Baoxia Wu,Huafeng Quan
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (1): 19-40 被引量:5
标识
DOI:10.3233/jifs-234549
摘要

As society evolves, companies produce more homogeneous products, shifting customers’ needs from functionality to emotions. Therefore, how quickly customers select products that meet their Kansei preferences has become a key concern. However, customer Kansei preferences vary from person to person and are ambiguous and uncertain, posing a challenge. To address this problem, this paper proposes a TF-KE-GRA-TOPSIS method that integrates triangular fuzzy Kansei engineering (TF-KE) with Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Firstly, a Kansei evaluation system is constructed based on KE and fuzzy theory. A dynamic triangular fuzzy Kansei preference similarity decision matrix (TF-KPSDM) is defined to quantify customer satisfaction with fuzzy Kansei preferences. Secondly, dynamic objective weights are derived using Criteria Importance Though Intercrieria Correlation (CRITIC) and entropy, optimized through game theory to achieve superior combined weights. Thirdly, the GRA-TOPSIS method utilizes the TF-KPSDM and combined weights to rank products. Finally, taking the case of Kansei preference selection for electric bicycles, results indicate that the proposed method robustly avoids rank reversal and achieves greater accuracy than comparative models. This study can help companies dynamically recommend products to customers based on their Kansei preferences, increasing customer satisfaction and sales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zm完成签到,获得积分10
1秒前
LIU发布了新的文献求助10
1秒前
situbingfei关注了科研通微信公众号
1秒前
Hh完成签到 ,获得积分10
1秒前
Wang发布了新的文献求助10
2秒前
2秒前
3秒前
胡小溪完成签到,获得积分10
3秒前
kuangkuang完成签到,获得积分10
4秒前
4秒前
5秒前
zhang完成签到,获得积分10
5秒前
科研通AI5应助大大彬采纳,获得10
5秒前
科研通AI5应助时尚颖采纳,获得10
5秒前
George Will发布了新的文献求助10
5秒前
wanci应助大气的雁桃采纳,获得10
6秒前
脑洞疼应助miumiu采纳,获得10
6秒前
专炸油条完成签到 ,获得积分10
7秒前
球球完成签到,获得积分10
7秒前
HXX完成签到,获得积分10
7秒前
8秒前
kuangkuang发布了新的文献求助10
8秒前
kaihua完成签到,获得积分20
8秒前
year发布了新的文献求助10
8秒前
9秒前
Owen应助Fairy采纳,获得10
9秒前
科研通AI5应助加贝采纳,获得10
9秒前
Yuksn发布了新的文献求助10
9秒前
失眠采白发布了新的文献求助20
10秒前
wsdekyt完成签到,获得积分10
10秒前
10秒前
qianyue发布了新的文献求助10
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
缥缈一刀完成签到,获得积分10
11秒前
小王呀完成签到,获得积分10
12秒前
TYJ完成签到,获得积分10
13秒前
zhaohu47完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809722
求助须知:如何正确求助?哪些是违规求助? 3354237
关于积分的说明 10369760
捐赠科研通 3070510
什么是DOI,文献DOI怎么找? 1686393
邀请新用户注册赠送积分活动 810922
科研通“疑难数据库(出版商)”最低求助积分说明 766433