核希尔伯特再生空间
核(代数)
力矩(物理)
匹配(统计)
数学
分布的核嵌入
生成语法
功能(生物学)
变核密度估计
算法
统计
应用数学
核方法
人工智能
计算机科学
希尔伯特空间
组合数学
纯数学
支持向量机
物理
生物
进化生物学
经典力学
作者
Benyamin Ghojogh,Ali Ghodsi
标识
DOI:10.31219/osf.io/34d9u
摘要
Maximum Mean Discrepancy (MMD), also called the kernel two-sample test, is a measurement for difference of two probability distributions. It measures this difference by pulling data to the reproducing kernel Hilbert space and calculating the difference of their first moments in that space. Generative Moment Matching Network (GMMN) uses MMD between the output of network and the training dataset as its loss function. Conditional GMMN makes it possible to generate data from a specific pattern or class label. Moreover, it is possible to find the best characteristic kernel function used in MMD loss function of GMMN. This tutorial and survey paper introduces MMD, GMMN, conditional GMMN, and MMD GAN for finding the best characteristic kernel in the MMD loss function.
科研通智能强力驱动
Strongly Powered by AbleSci AI