Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
费老五完成签到 ,获得积分10
1秒前
2秒前
娜娜完成签到 ,获得积分10
3秒前
搬砖王发布了新的文献求助10
4秒前
韭菜盒子完成签到,获得积分20
5秒前
6秒前
8秒前
hyx完成签到,获得积分10
11秒前
ding应助ws采纳,获得10
11秒前
12秒前
我是老大应助lvsehx采纳,获得10
12秒前
深情安青应助ZJQ采纳,获得30
13秒前
Cameron发布了新的文献求助20
13秒前
了又柳完成签到 ,获得积分10
14秒前
15秒前
15秒前
碧蓝香芦完成签到 ,获得积分10
18秒前
内向平萱发布了新的文献求助10
19秒前
20秒前
21秒前
汉堡包应助兴奋曼香采纳,获得10
24秒前
lvsehx发布了新的文献求助10
24秒前
24秒前
dfghjkl发布了新的文献求助10
25秒前
25秒前
26秒前
乡乡发布了新的文献求助10
31秒前
脑洞疼应助内向平萱采纳,获得10
31秒前
吃彭彭的丁满完成签到,获得积分10
31秒前
依然完成签到,获得积分10
32秒前
34秒前
蜜雪冰城完成签到,获得积分10
36秒前
38秒前
iNk应助ding采纳,获得20
38秒前
ZJQ发布了新的文献求助30
38秒前
39秒前
yk1978完成签到,获得积分10
42秒前
兴奋曼香发布了新的文献求助10
42秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778950
求助须知:如何正确求助?哪些是违规求助? 3324604
关于积分的说明 10218855
捐赠科研通 3039564
什么是DOI,文献DOI怎么找? 1668338
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440