Mechanism of the Terahertz Wave–MXene Interaction and Surface/Interface Chemistry of MXene for Terahertz Absorption and Shielding

太赫兹辐射 电磁屏蔽 吸收(声学) 机制(生物学) 化学 接口(物质) 太赫兹超材料 光电子学 屏蔽效应 材料科学 光学 分子 复合材料 有机化学 物理 远红外激光器 吉布斯等温线 量子力学 激光器
作者
Tao Zhao,Hujie Wan,Tianze Zhang,Xu Xiao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (15): 2184-2193 被引量:2
标识
DOI:10.1021/acs.accounts.4c00326
摘要

ConspectusOver the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz–matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials. However, these theories face challenges when applied to the THz spectrum with an ultrabroad bandwidth. Existing thin films typically achieve a maximum intrinsic absorption within a narrow frequency range, significantly limiting the performance of THz absorbers and detectors. To date, both theoretical frameworks and experimental solutions are lacking in overcoming the challenge of achieving broadband maximum intrinsic absorption in the THz regime.In this Account, we describe how two-dimensional (2D) transition-metal carbide and/or nitride (MXene) films with nanometer thickness can realize the maximum intrinsic absorption in the ultrabroad THz band, which successfully addresses the forementioned longstanding issue. Surprisingly, traditional DC impedance matching theory fails to explain this phenomenon, while we instead propose a novel theory of AC impedance matching to provide a satisfactory explanation. By delving into the microscopic transport behavior of free electrons in MXene, we discover that intraflake transport dominates terahertz conductivity under THz wave excitation, while interflake transport primarily dictates DC conductivity. This not only elucidates the significant disparities between DC and AC impedance in MXenes but also underscores the suitability of AC impedance matching for achieving broadband THz absorption limits. Furthermore, we identify a high electron concentration and short relaxation time as crucial factors for achieving broadband maximum absorption in the THz regime. Although approaching the THz intrinsic absorbing limits, it still faces hurdles to the use of MXene in practical applications. First, diverse and uncontrollable terminations exist on the surface of MXene stemming from the synthesis process, which largely influence the electron structure and THz absorbing property of MXene. Second, MXene suffers from poor stability in the presence of oxygen and water. To address the above issues, we have undertaken distinctive works to precisely control the terminations and suppress the oxidation of MXene even at high temperature through surface and interface chemistry, such as low-temperature Lewis basic halide treatment and building a Ti3C2Tx/extracted bentonite (EB) interface. For practical application consideration, we proposed a copolymer-polyacrylic latex (PAL)-based MXene waterborne paint (MWP) with a strong intermolecular polar interaction between MWP and the substrate provided by the cyano group in PAL. This not only has strong THz EMI shielding/absorption efficiency but also can easily adhere to various substrates that are commonly used in the THz band. These studies may have significant implications for future applications of MXene nanofilms in THz optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcad发布了新的文献求助10
刚刚
程程发布了新的文献求助10
刚刚
绿柳刀完成签到,获得积分10
1秒前
程昱完成签到,获得积分10
1秒前
DarrenVan完成签到,获得积分10
4秒前
图图完成签到,获得积分10
5秒前
5秒前
wanci应助adsx采纳,获得10
6秒前
明理的丹雪完成签到,获得积分10
6秒前
xiaofeixia完成签到 ,获得积分10
7秒前
9秒前
9秒前
云云发布了新的文献求助10
10秒前
若雨凌风应助怕黑银耳汤采纳,获得20
10秒前
香蕉觅云应助打工人采纳,获得10
13秒前
Khr1stINK发布了新的文献求助10
13秒前
我是老大应助GillianRan采纳,获得10
14秒前
左岸完成签到 ,获得积分10
14秒前
搜集达人应助ichigo采纳,获得10
16秒前
16秒前
16秒前
vv的平行宇宙完成签到,获得积分10
16秒前
jason发布了新的文献求助10
16秒前
18秒前
浮槎驳回了Akim应助
18秒前
19秒前
英姑应助Sawyer采纳,获得10
19秒前
JZ1640完成签到,获得积分10
19秒前
空白的卡卡完成签到,获得积分10
20秒前
SciGPT应助Khr1stINK采纳,获得10
20秒前
21秒前
zzz发布了新的文献求助10
21秒前
智博36发布了新的文献求助10
21秒前
21秒前
wangdi应助11采纳,获得10
22秒前
24秒前
24秒前
dou发布了新的文献求助10
24秒前
木木发布了新的文献求助10
25秒前
CodeCraft应助智博36采纳,获得10
26秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817349
求助须知:如何正确求助?哪些是违规求助? 3360735
关于积分的说明 10409073
捐赠科研通 3078857
什么是DOI,文献DOI怎么找? 1690789
邀请新用户注册赠送积分活动 814164
科研通“疑难数据库(出版商)”最低求助积分说明 768050