Mechanism of the Terahertz Wave–MXene Interaction and Surface/Interface Chemistry of MXene for Terahertz Absorption and Shielding

太赫兹辐射 电磁屏蔽 吸收(声学) 机制(生物学) 化学 接口(物质) 太赫兹超材料 光电子学 屏蔽效应 材料科学 光学 分子 复合材料 有机化学 物理 远红外激光器 量子力学 吉布斯等温线 激光器
作者
Tao Zhao,Hujie Wan,Tianze Zhang,Xu Xiao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (15): 2184-2193 被引量:6
标识
DOI:10.1021/acs.accounts.4c00326
摘要

ConspectusOver the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz–matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials. However, these theories face challenges when applied to the THz spectrum with an ultrabroad bandwidth. Existing thin films typically achieve a maximum intrinsic absorption within a narrow frequency range, significantly limiting the performance of THz absorbers and detectors. To date, both theoretical frameworks and experimental solutions are lacking in overcoming the challenge of achieving broadband maximum intrinsic absorption in the THz regime.In this Account, we describe how two-dimensional (2D) transition-metal carbide and/or nitride (MXene) films with nanometer thickness can realize the maximum intrinsic absorption in the ultrabroad THz band, which successfully addresses the forementioned longstanding issue. Surprisingly, traditional DC impedance matching theory fails to explain this phenomenon, while we instead propose a novel theory of AC impedance matching to provide a satisfactory explanation. By delving into the microscopic transport behavior of free electrons in MXene, we discover that intraflake transport dominates terahertz conductivity under THz wave excitation, while interflake transport primarily dictates DC conductivity. This not only elucidates the significant disparities between DC and AC impedance in MXenes but also underscores the suitability of AC impedance matching for achieving broadband THz absorption limits. Furthermore, we identify a high electron concentration and short relaxation time as crucial factors for achieving broadband maximum absorption in the THz regime. Although approaching the THz intrinsic absorbing limits, it still faces hurdles to the use of MXene in practical applications. First, diverse and uncontrollable terminations exist on the surface of MXene stemming from the synthesis process, which largely influence the electron structure and THz absorbing property of MXene. Second, MXene suffers from poor stability in the presence of oxygen and water. To address the above issues, we have undertaken distinctive works to precisely control the terminations and suppress the oxidation of MXene even at high temperature through surface and interface chemistry, such as low-temperature Lewis basic halide treatment and building a Ti3C2Tx/extracted bentonite (EB) interface. For practical application consideration, we proposed a copolymer-polyacrylic latex (PAL)-based MXene waterborne paint (MWP) with a strong intermolecular polar interaction between MWP and the substrate provided by the cyano group in PAL. This not only has strong THz EMI shielding/absorption efficiency but also can easily adhere to various substrates that are commonly used in the THz band. These studies may have significant implications for future applications of MXene nanofilms in THz optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lian发布了新的文献求助10
刚刚
刚刚
谷大喵唔发布了新的文献求助30
3秒前
hyiyi发布了新的文献求助10
3秒前
4秒前
7秒前
9秒前
10秒前
11秒前
善学以致用应助cc采纳,获得10
11秒前
12秒前
飞快的诗槐完成签到,获得积分10
13秒前
ZZzz完成签到,获得积分10
13秒前
14秒前
我是老大应助李昕123采纳,获得10
15秒前
farsh发布了新的文献求助10
17秒前
ccc发布了新的文献求助10
17秒前
17秒前
小酚发布了新的文献求助10
18秒前
谷大喵唔完成签到,获得积分20
20秒前
hyiyi完成签到,获得积分10
22秒前
小蘑菇应助朴实千易采纳,获得10
22秒前
23秒前
24秒前
ibas应助虚幻元芹采纳,获得10
26秒前
27秒前
小宋爱科研完成签到 ,获得积分10
27秒前
28秒前
可爱的函函应助远在咫尺采纳,获得10
28秒前
上官若男应助甜美的绮菱采纳,获得10
28秒前
脆脆鲨发布了新的文献求助10
29秒前
吭吭菜菜完成签到,获得积分10
29秒前
xiaocoub完成签到,获得积分10
30秒前
30秒前
31秒前
想胖的竹竿完成签到,获得积分10
31秒前
小白发布了新的文献求助10
32秒前
33秒前
wxiao发布了新的文献求助10
34秒前
ding应助l2385865294采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
The Bloomsbury companion to the philosophy of sport 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4713910
求助须知:如何正确求助?哪些是违规求助? 4076992
关于积分的说明 12608820
捐赠科研通 3779907
什么是DOI,文献DOI怎么找? 2087900
邀请新用户注册赠送积分活动 1114244
科研通“疑难数据库(出版商)”最低求助积分说明 991672