亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of diabetic patients using blood routine data

计算机科学 机器学习 人工智能 糖尿病 内科学 医学 内分泌学
作者
Honghao Li,Dongqing Su,Xinpeng Zhang,Yuanyuan He,Xu Luo,Yuqiang Xiong,Min Zou,Huiyan Wei,Shaoran Wen,Qilemuge Xi,Yongchun Zuo,Lei Yang
出处
期刊:Methods [Elsevier BV]
卷期号:229: 156-162 被引量:1
标识
DOI:10.1016/j.ymeth.2024.07.001
摘要

Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捉迷藏完成签到,获得积分10
5秒前
动漫大师发布了新的文献求助50
5秒前
6秒前
9秒前
标致的寄松完成签到,获得积分20
33秒前
34秒前
43秒前
33应助科研通管家采纳,获得10
51秒前
testmanfuxk完成签到,获得积分10
1分钟前
尚奇发布了新的文献求助20
1分钟前
1分钟前
1分钟前
紫韵完成签到,获得积分10
1分钟前
Frose发布了新的文献求助10
1分钟前
紫韵发布了新的文献求助10
1分钟前
puppy完成签到 ,获得积分10
1分钟前
1分钟前
莉莉斯完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助单纯的雅香采纳,获得10
1分钟前
尚奇发布了新的文献求助10
2分钟前
aidengu完成签到 ,获得积分0
2分钟前
Frose完成签到,获得积分10
2分钟前
Lucas应助尚奇采纳,获得10
2分钟前
ANmin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zzz发布了新的文献求助10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
2分钟前
沙脑完成签到 ,获得积分10
2分钟前
尚奇发布了新的文献求助10
2分钟前
2分钟前
李健的小迷弟应助坚果采纳,获得10
3分钟前
尚奇完成签到,获得积分10
3分钟前
剑指东方是为谁应助aXing~~采纳,获得10
3分钟前
养猪大户完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819910
求助须知:如何正确求助?哪些是违规求助? 3362772
关于积分的说明 10418788
捐赠科研通 3081157
什么是DOI,文献DOI怎么找? 1694980
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522