Interior sound quality evaluation and forecasting of passenger vehicles based on hybrid optimization neural networks

人工神经网络 计算机科学 音质 声音(地理) 质量(理念) 工程类 人工智能 声学 语音识别 认识论 物理 哲学
作者
Kun Qian,Jing Tan,Zhenghua Shen,Ke Liu,Yanfu Wang,J. Duan,Xikang Du,Jian Zhao
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463241282049
摘要

The interior noise of vehicles directly affects the comfort of the occupants, necessitating precise evaluation and control. Existing research has focused on constructing mappings between objective parameters and subjective perceptions of noise, where back propagation neural networks (BPNNs) are widely used due to their strong nonlinear mapping capabilities. However, the selection of initial weights and thresholds can affect the predictive accuracy of BPNN. This study developed a BPNN model optimized by an intelligent algorithm for predicting the level of subjective annoyance of passengers during the movement. Initially, objective parameters of interior noise were obtained through acoustic signal processing techniques, and five parameters were selected for studying subjective annoyance through correlation analysis and two-tailed tests. Meanwhile, the actual subjective ratings of passengers on interior noise were captured for subsequent training of the model and testing of the results. Finally, the established sparrow search algorithm (SSA) and genetic algorithm (GA) optimized BPNN were used to predict subjective evaluations. The predictive accuracy and efficiency of the model were significantly improved upon validation, providing a viable alternative to traditional passenger vehicle noise assessment experiments and valuable references for future noise control and optimization efforts. The experimental results are consistent with the view that the neural network model optimized with a mixture of intelligent algorithms is closer to the passenger’s subjective annoyance level having higher accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
多情方盒完成签到,获得积分10
1秒前
热沙来提完成签到,获得积分20
2秒前
马騳骉完成签到,获得积分10
2秒前
卷大喵发布了新的文献求助10
5秒前
淡然士晋发布了新的文献求助10
5秒前
三愿完成签到 ,获得积分10
5秒前
8秒前
BONe完成签到,获得积分10
10秒前
研友_CCQ_M完成签到,获得积分10
11秒前
科研通AI5应助hui采纳,获得10
11秒前
BONe发布了新的文献求助10
12秒前
TT2022发布了新的文献求助10
13秒前
赘婿应助yangching采纳,获得10
14秒前
搜集达人应助成诗怡采纳,获得10
15秒前
不甜完成签到 ,获得积分10
16秒前
16秒前
李健应助yeyii采纳,获得10
17秒前
19秒前
21秒前
21秒前
yige发布了新的文献求助10
21秒前
22秒前
淡然士晋完成签到,获得积分10
23秒前
暗月皇发布了新的文献求助10
23秒前
糊涂的元珊完成签到 ,获得积分10
23秒前
Mry完成签到,获得积分10
24秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
27秒前
日出发布了新的文献求助10
27秒前
成诗怡发布了新的文献求助10
27秒前
KXC完成签到,获得积分20
27秒前
huahua完成签到 ,获得积分10
30秒前
田様应助Oasis采纳,获得10
30秒前
阳光完成签到,获得积分10
32秒前
冲冲冲完成签到,获得积分10
32秒前
暖羊羊Y完成签到 ,获得积分10
34秒前
顺其自然_666888完成签到,获得积分10
34秒前
wy1693207859完成签到,获得积分10
35秒前
邓佳鑫Alan应助芷兰丁香采纳,获得10
35秒前
成诗怡完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734