Semi-supervised source-free domain adaptation method via diffusive label propagation for rotating machinery fault diagnosis

计算机科学 域适应 正规化(语言学) 适应(眼睛) 人工智能 标记数据 一致性(知识库) 领域(数学分析) 机器学习 模式识别(心理学) 数据挖掘 分类器(UML) 数学 数学分析 物理 光学
作者
Zhiheng Su,Penglong Lian,Penghui Shang,Jiyang Zhang,Hongbing Xu,Jianxiao Zou,Shicai Fan
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:252: 110408-110408 被引量:2
标识
DOI:10.1016/j.ress.2024.110408
摘要

Traditional domain adaptation methods address the performance degradation of deep learning models in diagnostic tasks under varying working conditions, assuming that source data is available. With the increasing demand for data privacy protection, access to source data has become restricted, leading to the rise of source-free domain adaptation methods. However, without any labels in the target domain, the adaptation process and performance of the model may be unstable and impractical for real-world scenarios. To address these issues, a semi-supervised source-free domain adaptation method via diffusive label propagation (SSFDA-DLP) is proposed in this paper. With only one labeled target sample provided for each class, SSFDA-DLP can diffuse the label information to the unlabeled target data through repeated iterations of pre-training with labeled target data and annotating new target data that are adjacent to the labeled ones. Considering that label propagation may incorrectly annotate some unlabeled samples, and to make full use of the unlabeled target data, feature and probability spaces consistency regularization is utilized to further improve the performance of the pre-trained model. The effectiveness and superiority of our method in source-free domain adaptation diagnostic tasks were evaluated on four datasets, including bearings and gears.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
leoMD发布了新的文献求助20
1秒前
www完成签到,获得积分20
1秒前
小柔完成签到,获得积分10
1秒前
善学以致用应助JingP采纳,获得10
1秒前
可可应助Fatek采纳,获得10
1秒前
1秒前
2秒前
3秒前
cherish完成签到,获得积分10
3秒前
3秒前
蓝鲸完成签到,获得积分10
3秒前
威武怀蕊发布了新的文献求助10
3秒前
汉堡发布了新的文献求助10
4秒前
4秒前
倾千奚山发布了新的文献求助10
5秒前
啊咧咧完成签到 ,获得积分10
6秒前
酷波er应助木木彡采纳,获得10
6秒前
JamesPei应助didididada采纳,获得10
7秒前
nn发布了新的文献求助10
7秒前
AHR发布了新的文献求助10
8秒前
rainy77发布了新的文献求助10
9秒前
9秒前
9秒前
happyboy2008发布了新的文献求助10
9秒前
10秒前
Mandy完成签到 ,获得积分10
10秒前
liyk完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
11秒前
ZWQ完成签到,获得积分10
11秒前
情怀应助QMZ采纳,获得30
12秒前
传奇3应助1234采纳,获得20
12秒前
丰富广缘完成签到 ,获得积分10
12秒前
威武怀蕊完成签到,获得积分10
12秒前
小猪完成签到,获得积分10
13秒前
岁岁平完成签到 ,获得积分10
13秒前
13秒前
尔沁发布了新的文献求助10
14秒前
欢呼妙彤发布了新的文献求助10
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425