Domain-interactive Contrastive Learning and Prototype-guided Self-training for Cross-domain Polyp Segmentation

计算机科学 领域(数学分析) 人工智能 分割 图像分割 培训(气象学) 计算机视觉 模式识别(心理学) 数学 数学分析 物理 气象学
作者
Ziru Lu,Yizhe Zhang,Yi Zhou,Ye Wu,Tao Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3443262
摘要

Accurate polyp segmentation plays a critical role from colonoscopy images in the diagnosis and treatment of colorectal cancer. While deep learning-based polyp segmentation models have made significant progress, they often suffer from performance degradation when applied to unseen target domain datasets collected from different imaging devices. To address this challenge, unsupervised domain adaptation (UDA) methods have gained attention by leveraging labeled source data and unlabeled target data to reduce the domain gap. However, existing UDA methods primarily focus on capturing class-wise representations, neglecting domain-wise representations. Additionally, uncertainty in pseudo labels could hinder the segmentation performance. To tackle these issues, we propose a novel Domain-interactive Contrastive Learning and Prototype-guided Self-training (DCL-PS) framework for cross-domain polyp segmentation. Specifically, domaininteractive contrastive learning (DCL) with a domain-mixed prototype updating strategy is proposed to discriminate class-wise feature representations across domains. Then, to enhance the feature extraction ability of the encoder, we present a contrastive learning-based cross-consistency training (CL-CCT) strategy, which is imposed on both the prototypes obtained by the outputs of the main decoder and perturbed auxiliary outputs. Furthermore, we propose a prototype-guided self-training (PS) strategy, which dynamically assigns a weight for each pixel during selftraining, filtering out unreliable pixels and improving the quality of pseudo-labels. Experimental results demonstrate the superiority of DCL-PS in improving polyp segmentation performance in the target domain. The code will be released at https://github.com/taozh2017/DCLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨杨杨完成签到 ,获得积分10
刚刚
铜泰妍完成签到 ,获得积分10
刚刚
踏实的纸飞机完成签到 ,获得积分10
1秒前
立刻有完成签到 ,获得积分10
1秒前
犹豫的若完成签到,获得积分10
3秒前
王十二完成签到 ,获得积分10
4秒前
鲸鱼姐姐完成签到 ,获得积分10
5秒前
liu完成签到 ,获得积分10
6秒前
CipherSage应助立食劳栖采纳,获得10
6秒前
凌晨五点的完成签到,获得积分10
7秒前
H1lb2rt完成签到 ,获得积分10
8秒前
落后访风完成签到,获得积分10
8秒前
michaelvin完成签到,获得积分10
9秒前
妙蛙种子耶完成签到,获得积分10
9秒前
浆果肉丸完成签到,获得积分10
10秒前
wang456发布了新的文献求助10
10秒前
tanmeng77完成签到,获得积分10
11秒前
sincyking完成签到,获得积分10
11秒前
晨曦完成签到,获得积分0
12秒前
淡墨完成签到,获得积分10
12秒前
12秒前
Zlinco完成签到,获得积分10
14秒前
14秒前
小张想发刊完成签到,获得积分10
14秒前
任大师兄完成签到,获得积分10
15秒前
chowjb完成签到,获得积分10
15秒前
研友_Z60ObL完成签到,获得积分10
16秒前
Zo完成签到,获得积分10
16秒前
天真酒窝完成签到,获得积分10
16秒前
chen完成签到 ,获得积分20
16秒前
17秒前
wang456完成签到,获得积分10
17秒前
yml完成签到 ,获得积分10
18秒前
18秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
19秒前
吕圆圆圆啊完成签到,获得积分10
22秒前
三杠完成签到 ,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333754
关于积分的说明 10263401
捐赠科研通 3049672
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526