亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain-Interactive Contrastive Learning and Prototype-Guided Self-Training for Cross-Domain Polyp Segmentation

计算机科学 领域(数学分析) 人工智能 分割 图像分割 培训(气象学) 计算机视觉 模式识别(心理学) 数学 数学分析 物理 气象学
作者
Ziru Lu,Yizhe Zhang,Yi Zhou,Ye Wu,Tao Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (9): 3563-3573 被引量:5
标识
DOI:10.1109/tmi.2024.3443262
摘要

Accurate polyp segmentation plays a critical role in the diagnosis and treatment of colorectal cancer from colonoscopy images. While deep learning-based polyp segmentation models have made significant progress, they often suffer from performance degradation when applied to unseen target domain datasets collected from different imaging devices. To address this challenge, unsupervised domain adaptation (UDA) methods have gained attention by leveraging labeled source data and unlabeled target data to reduce the domain gap. However, existing UDA methods primarily focus on capturing class-wise representations, neglecting domain-wise representations. Additionally, uncertainty in pseudo-labels could hinder the segmentation performance. To tackle these issues, we propose a novel Domain-interactive Contrastive Learning and Prototype-guided Self-training (DCL-PS) framework for cross-domain polyp segmentation. Specifically, domain-interactive contrastive learning (DCL) with a domain-mixed prototype updating strategy is proposed to discriminate class-wise feature representations across domains. Then, to enhance the feature extraction ability of the encoder, we present a contrastive learning-based cross-consistency training (CL-CCT) strategy, which is imposed on both the prototypes obtained by the outputs of the main decoder and perturbed auxiliary outputs. Furthermore, we propose a prototype-guided self-training (PS) strategy, which dynamically assigns a weight for each pixel during self-training, filtering out unreliable pixels and improving the quality of pseudo-labels. Experimental results demonstrate the superiority of DCL-PS in improving polyp segmentation performance in the target domain. The code is released at https://github.com/taozh2017/DCLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十有五发布了新的文献求助10
1秒前
soft发布了新的文献求助50
7秒前
拿铁小笼包完成签到,获得积分10
7秒前
yujiayou完成签到,获得积分10
7秒前
香蕉觅云应助semon采纳,获得10
10秒前
11秒前
隐形曼青应助叙温雨采纳,获得10
16秒前
修慈发布了新的文献求助10
17秒前
林白应助廖昱霖采纳,获得10
35秒前
修慈完成签到,获得积分10
39秒前
今后应助修慈采纳,获得10
43秒前
55秒前
CipherSage应助Magali采纳,获得10
56秒前
大郭完成签到,获得积分20
57秒前
LX完成签到,获得积分10
58秒前
叙温雨发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
yyds发布了新的文献求助10
1分钟前
Amai完成签到,获得积分10
1分钟前
1分钟前
soft完成签到,获得积分10
1分钟前
PPP完成签到,获得积分10
1分钟前
FMHChan完成签到,获得积分10
2分钟前
ZJX应助个性的绮彤采纳,获得10
2分钟前
2分钟前
2分钟前
医研发布了新的文献求助10
2分钟前
星星发布了新的文献求助10
2分钟前
星星完成签到,获得积分10
2分钟前
chloe完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291397
求助须知:如何正确求助?哪些是违规求助? 4442414
关于积分的说明 13829865
捐赠科研通 4325442
什么是DOI,文献DOI怎么找? 2374255
邀请新用户注册赠送积分活动 1369544
关于科研通互助平台的介绍 1333738