Trustworthy Limited Data CT Reconstruction Using Progressive Artifact Image Learning

工件(错误) 计算机科学 人工智能 迭代重建 计算机视觉 可信赖性 图像处理 图像(数学) 模式识别(心理学) 计算机安全
作者
Jianjia Zhang,Zirong Li,Jiayi Pan,Shaoyu Wang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1163-1178 被引量:1
标识
DOI:10.1109/tip.2025.3534559
摘要

The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
务实大神发布了新的文献求助10
4秒前
森sen完成签到 ,获得积分10
4秒前
天天发布了新的文献求助10
4秒前
北门书生发布了新的文献求助10
4秒前
不吃西瓜发布了新的文献求助10
5秒前
Liuyan发布了新的文献求助30
6秒前
6秒前
cmw发布了新的文献求助10
7秒前
7秒前
安夏完成签到,获得积分10
9秒前
胖胖玩啊玩完成签到 ,获得积分10
9秒前
拓跋忆霜完成签到,获得积分10
10秒前
11秒前
11秒前
烟花应助Kohiru采纳,获得10
11秒前
小丹发布了新的文献求助10
12秒前
13秒前
FashionBoy应助jfaioe采纳,获得10
13秒前
SciGPT应助天天采纳,获得10
14秒前
hebilie完成签到,获得积分10
14秒前
husy完成签到,获得积分10
15秒前
Xy应助狂野金鑫采纳,获得20
15秒前
称心如意发布了新的文献求助10
16秒前
悠然发布了新的文献求助10
16秒前
mahliya完成签到,获得积分10
19秒前
打打应助胡图图采纳,获得10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
mkW完成签到,获得积分10
23秒前
烟花应助欧气青年采纳,获得10
24秒前
Owen应助围城采纳,获得30
24秒前
领导范儿应助sharony采纳,获得10
25秒前
26秒前
26秒前
向雨竹发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861404
求助须知:如何正确求助?哪些是违规求助? 3403836
关于积分的说明 10636709
捐赠科研通 3126851
什么是DOI,文献DOI怎么找? 1724438
邀请新用户注册赠送积分活动 830479
科研通“疑难数据库(出版商)”最低求助积分说明 779188