Probing the eukaryotic microbes of ruminants with a deep-learning classifier and comprehensive protein databases

生物 基因组 基因组 微生物群 瘤胃 原生动物 计算生物学 反刍动物 基因组学 微生物生态学 小桶 进化生物学 生态学 基因 细菌 遗传学 转录组 生物化学 基因表达 发酵 作物
作者
Ming Yan,Thea Os Andersen,Phillip B. Pope,Zhongtang Yu
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:: gr.279825.124-gr.279825.124
标识
DOI:10.1101/gr.279825.124
摘要

Metagenomics, particularly genome-resolved metagenomics, has significantly deepened our understanding of microbes, illuminating their taxonomic and functional diversity and roles in ecology, physiology, and evolution. However, eukaryotic populations within various microbiomes, including those in the mammalian gastrointestinal (GI) tract, remain relatively underexplored in metagenomic studies due to the lack of comprehensive reference genome databases and robust bioinformatics tools. The GI tract of ruminants, particularly the rumen, contains a high eukaryotic biomass although a relatively low diversity of ciliates and fungi, which significantly impacts feed digestion, methane emissions, and rumen microbial ecology. In the present study, we developed GutEuk, a bioinformatics tool that improves upon the currently available Tiara and EukRep in accurately identifying eukaryotic sequences from metagenomes. GutEuk is optimized for high precision across different sequence lengths. It can also distinguish fungal and protozoal sequences, further elucidating their unique ecological, physiological, and nutritional impacts. GutEuk was shown to facilitate comprehensive analyses of protozoa and fungi within more than one thousand rumen metagenomes, revealing a greater genomic diversity among protozoa than previously documented. We further curated several ruminant eukaryotic protein databases, significantly enhancing our ability to distinguish the functional roles of ruminant fungi and protozoa from those of prokaryotes. Overall, the newly developed package GutEuk and its associated databases create new opportunities for in-depth study of GI tract eukaryotes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夜盏丿完成签到,获得积分10
3秒前
3秒前
牡丹花下发布了新的文献求助10
6秒前
王心桐发布了新的文献求助10
6秒前
10秒前
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
兔子发布了新的文献求助10
11秒前
11秒前
灯火完成签到,获得积分10
13秒前
14秒前
香蕉觅云应助taowang采纳,获得30
16秒前
Huayan发布了新的文献求助10
16秒前
搜集达人应助蒋磊采纳,获得10
17秒前
灯火发布了新的文献求助30
18秒前
李健的小迷弟应助FKKKKSY采纳,获得10
19秒前
Tangyartie完成签到 ,获得积分10
21秒前
22秒前
顽固分子完成签到 ,获得积分10
23秒前
牡丹花下完成签到 ,获得积分10
23秒前
24秒前
25秒前
无聊的玉米完成签到,获得积分10
26秒前
许志荣发布了新的文献求助10
27秒前
28秒前
28秒前
赘婿应助日月同辉采纳,获得10
28秒前
Ava应助sendou采纳,获得10
28秒前
29秒前
今北完成签到,获得积分10
29秒前
花无双完成签到,获得积分0
29秒前
FKKKKSY完成签到,获得积分10
29秒前
Xiaoxiao发布了新的文献求助10
30秒前
陈同学完成签到,获得积分10
30秒前
小巧钢笔发布了新的文献求助10
30秒前
Hina完成签到,获得积分10
30秒前
自然的霸发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784551
求助须知:如何正确求助?哪些是违规求助? 4111791
关于积分的说明 12720731
捐赠科研通 3836495
什么是DOI,文献DOI怎么找? 2115374
邀请新用户注册赠送积分活动 1138370
关于科研通互助平台的介绍 1024339