Feature selection with multi-class logistic regression

过度拟合 特征选择 铰链损耗 人工智能 加权 计算机科学 超平面 子空间拓扑 模式识别(心理学) 特征(语言学) 梯度下降 规范(哲学) 肯定性 算法 数学优化 数学 支持向量机 正定矩阵 人工神经网络 医学 物理 放射科 哲学 量子力学 语言学 特征向量 政治学 法学 几何学
作者
Jingyu Wang,Hongmei Wang,Feiping Nie,Xuelong Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:543: 126268-126268 被引量:16
标识
DOI:10.1016/j.neucom.2023.126268
摘要

Feature selection can help to reduce data redundancy and improve algorithm performance in actual tasks. Most of the embedded feature selection models are constructed based on square loss and hinge loss. However, these models based on the square loss cannot directly evaluate the discriminability of the samples in the feature subspace, and these methods based on the hinge loss are difficult to solve due to their complex objective functions. To deal with these problems, a Feature Selection method with Multi-class Logistic Regression (FSMLR) is proposed in this paper. Firstly, we construct a linear function to measure the difference between the distance from samples to their regression hyperplane and the distance from these samples to regression hyperplanes of other classes, which could be used to strengthen the discriminant property of the embedded model. Then, we design a re-weighting matrix with a ℓ2,0-norm sparse condition as well as a discrete condition, which is used to select features in the subspace. Considering that it is difficult to solve the re-weighting matrix with the discrete and sparse conditions in an optimization problem, we relax these two conditions and present a feature selection model via a re-weighted multi-class logistic regression with the two relaxed constraints. Finally, we add the F-norm regularization in our model to avoid overfitting, and its unconstrained equivalent transformation with ℓ2,p-norm regularization is derived to explore the function of the re-weighting matrix. The gradient descent algorithm could be used to solve the FSMLR. Especially, when the regularization term in the equivalence problem is set to ℓ2,1-norm, the global optimal solution can be obtained. Extensive experiments on multiple public data sets prove that FSMLR outperforms other competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米米发布了新的文献求助10
1秒前
kathleen发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
爆米花应助苏栀采纳,获得10
3秒前
SciGPT应助你好帅的哦采纳,获得10
3秒前
桐桐应助机灵柚子采纳,获得10
4秒前
xzy完成签到,获得积分10
4秒前
4秒前
刻苦觅荷完成签到,获得积分10
4秒前
啦啦啦123发布了新的文献求助10
4秒前
mage发布了新的文献求助10
5秒前
有足量NaCl发布了新的文献求助10
6秒前
sugar发布了新的文献求助10
6秒前
pluvia完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
谨慎的宝贝完成签到,获得积分10
9秒前
gyro发布了新的文献求助10
10秒前
10秒前
JamesPei应助zgm断翅蝴蝶采纳,获得20
10秒前
啦啦啦123完成签到,获得积分10
10秒前
xzy发布了新的文献求助10
11秒前
12秒前
gyro完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
Fox完成签到,获得积分20
18秒前
19秒前
19秒前
忽昨日完成签到,获得积分10
19秒前
54完成签到,获得积分10
20秒前
科研通AI2S应助机灵柚子采纳,获得10
20秒前
H的流年发布了新的文献求助10
21秒前
21秒前
21秒前
1111完成签到,获得积分10
21秒前
脑洞疼应助林夕采纳,获得10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250