布鲁塞尔人
分叉
图灵
吸引子
不稳定性
数学
分叉理论的生物学应用
常量(计算机编程)
跳跃
应用数学
统计物理学
分岔图
数学分析
非线性系统
物理
计算机科学
机械
量子力学
程序设计语言
作者
Yuncherl Choi,Taeyoung Ha,Jongmin Han,Young Rock Kim,Doo Seok Lee
摘要
In this paper, we analyze the dynamic bifurcation of the general Brusselator model when the order of reaction is $ p \in (1,\infty) $. We verify that the Turing instability occurs above the critical control number and obtain a rigorous formula for the bifurcated stable patterns. We define a constant $ s_N $ that gives a criterion for the continuous transition. We obtain continuous transitions for $ s_N>0 $, but jump transitions for $ s_N<0 $. By using this criterion, we prove mathematically that higher-molecular reactions are rarely observed. We also provide some numerical results that illustrate the main results.
科研通智能强力驱动
Strongly Powered by AbleSci AI