MP07-08 A FULLY AUTOMATED MULTI-TASK MACHINE LEARNING PROGNOSTIC MODEL INTEGRATING RADIOMICS AND CLINICAL DATA TO PREDICT OUTCOMES IN HIGH-GRADE PROSTATE CANCER

无线电技术 前列腺癌 任务(项目管理) 人工智能 机器学习 计算机科学 医学 医学物理学 癌症 内科学 工程类 系统工程
作者
Nawar Touma,Maxence Larose,Raphaël Brodeur,Félix Desroches,Daphnée Bédard‐Tremblay,Nicolas Raymond,Danahé Leblanc,Fatemeh Rasekh,Hélène Hovington,Bertrand Neveu,Martin Vallières,Louis Archambault,Frédéric Pouliot
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008728.41882.d7.08
摘要

You have accessJournal of UrologySurgical Technology & Simulation: Artificial Intelligence I (MP07)1 May 2024MP07-08 A FULLY AUTOMATED MULTI-TASK MACHINE LEARNING PROGNOSTIC MODEL INTEGRATING RADIOMICS AND CLINICAL DATA TO PREDICT OUTCOMES IN HIGH-GRADE PROSTATE CANCER Nawar Touma, Maxence Larose, Raphaël Brodeur, Félix Desroches, Daphnée Bédard-Tremblay, Nicolas Raymond, Danahé Leblanc, Fatemeh Rasekh, Hélène Hovington, Bertrand Neveu, Martin Vallières, Louis Archambault, and Frédéric Pouliot Nawar ToumaNawar Touma , Maxence LaroseMaxence Larose , Raphaël BrodeurRaphaël Brodeur , Félix DesrochesFélix Desroches , Daphnée Bédard-TremblayDaphnée Bédard-Tremblay , Nicolas RaymondNicolas Raymond , Danahé LeblancDanahé Leblanc , Fatemeh RasekhFatemeh Rasekh , Hélène HovingtonHélène Hovington , Bertrand NeveuBertrand Neveu , Martin VallièresMartin Vallières , Louis ArchambaultLouis Archambault , and Frédéric PouliotFrédéric Pouliot View All Author Informationhttps://doi.org/10.1097/01.JU.0001008728.41882.d7.08AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: To develop an automated multi-task prognostic model that combines clinical data with radiomics from positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) combined with computed tomography (CT), eliminating the need for manual segmentation while providing clinically interpretable results. This is the first study of its kind using radiomics in prostate cancer that describes long-term clinical outcomes. METHODS: A total of 295 individuals with high-grade PCa (Gleason score≥8) underwent radical prostatectomy (RP) with preoperative FDG-PET/CT imaging at our tertiary care health center. Clinical data (CD), including age, prostate-specific antigen (PSA) level, clinical stage, and Gleason grade, were collected. Six prognostic tasks were defined, including lymph node invasion (LNI), biochemical recurrence (BCR)-free survival (FS), metastasis-free survival (MFS), definitive androgen deprivation therapy (dADT)-FS, castration-resistant prostate cancer (CRPC)-FS, and prostate cancer-specific survival (PCSS). A Bayesian Sequential Network (BSN), a dynamic prediction model quantifying uncertainty and adapting over time as outcomes from prior tasks unfold, was developed. It was compared with commonly used nomograms (MSKCC and CAPRA-S). Performance metrics on the holdout set were evaluated using the area under the curve of the receiver operator characteristic (AUC-ROC) and the concordance index (C-index). RESULTS: Median follow-up was 64.7 (range 29.3-89.6) months. Median age was 66 (48-80) years. Median PSA was 7.4 (1.1-155.3) ng/ml. 230 (88%) and 31 (12%) had clinical T1-T2 and T3a disease, respectively. At RP, 86 (29%) had LNI. At follow-up, 160 had BCR, 38 had metastases, 72 started dADT, 23 had CRPC, and 11 had PCSS. On the holdout set comprising 45 individuals, the BSN model outperformed nomograms for predicting LNI (AUC=66.3%), MFS (CI=75.3%), and dADT-FS (CI=69.6%). The nomogram outperformed our BSN model for predicting BCR-FS (CI=63.5% [MSKCC] vs 59.2%), CRPC-FS (CI=67.6% [CAPRA-S] vs 65.6%), and PCSS (CI=87.8% [MSKCC] vs 78.0%). CONCLUSIONS: We present a fully automated self-learning multi-task model that integrates FDG-PET/CT imaging data to predict clinical outcomes while quantifying predictions' associated uncertainty. It achieved good results with minimal training compared to commonly used nomograms. Source of Funding: None © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e107 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Nawar Touma More articles by this author Maxence Larose More articles by this author Raphaël Brodeur More articles by this author Félix Desroches More articles by this author Daphnée Bédard-Tremblay More articles by this author Nicolas Raymond More articles by this author Danahé Leblanc More articles by this author Fatemeh Rasekh More articles by this author Hélène Hovington More articles by this author Bertrand Neveu More articles by this author Martin Vallières More articles by this author Louis Archambault More articles by this author Frédéric Pouliot More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果新儿完成签到,获得积分10
2秒前
3秒前
3秒前
脂蛋白抗原完成签到,获得积分10
3秒前
3秒前
joyee完成签到,获得积分10
3秒前
4秒前
疯狂的灵发布了新的文献求助10
9秒前
高挑的幼翠完成签到,获得积分10
9秒前
sylinmm完成签到,获得积分10
9秒前
随缘发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助饼饼采纳,获得10
12秒前
研友_nPPzon发布了新的文献求助10
13秒前
羊白玉完成签到 ,获得积分10
15秒前
Jasper应助星海种花采纳,获得10
19秒前
19秒前
19秒前
研友_nPPzon完成签到,获得积分10
19秒前
Andrew完成签到,获得积分10
20秒前
杰老爷完成签到,获得积分10
24秒前
苹果新儿发布了新的文献求助10
24秒前
俊逸的问薇完成签到 ,获得积分10
28秒前
30秒前
30秒前
我是老大应助叶mt采纳,获得10
34秒前
zchchem应助kk采纳,获得30
36秒前
38秒前
布丁完成签到 ,获得积分10
38秒前
40秒前
40秒前
44秒前
充电宝应助阳光莲小蓬采纳,获得10
44秒前
超帅连虎应助粒粒采纳,获得20
47秒前
麻烦~发布了新的文献求助30
47秒前
zianlai完成签到,获得积分10
50秒前
完美世界应助科研通管家采纳,获得10
53秒前
Nico应助科研通管家采纳,获得10
53秒前
佳佳应助科研通管家采纳,获得10
53秒前
NexusExplorer应助科研通管家采纳,获得10
53秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120736
求助须知:如何正确求助?哪些是违规求助? 3658966
关于积分的说明 11582363
捐赠科研通 3360471
什么是DOI,文献DOI怎么找? 1846429
邀请新用户注册赠送积分活动 911198
科研通“疑难数据库(出版商)”最低求助积分说明 827352