Flow field reconstruction from spray imaging: A hybrid physics-based and machine learning approach based on two-phase fluorescence particle image velocimetry measurements

粒子图像测速 多相流 气流 喷雾特性 物理 人工智能 计算机科学 喷嘴 机械 喷嘴 湍流 热力学
作者
Fengnian Zhao,Ziming Zhou,David L. S. Hung,Xuesong Li,Min Xu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:8
标识
DOI:10.1063/5.0192703
摘要

The interaction between liquid spray and the surrounding air is crucial in fluid research, especially in the study of fuel spray and combustion. However, the fuel spray–air interaction is a complex process influenced by multiple factors, including fuel type, fuel injection pressure, and fuel temperature. These factors are coupled together, making it challenging and time-consuming to accurately capture the spray–air data using traditional experimental methods alone. The current study proposes a hybrid physics-based and machine learning model for utilizing spray images to reconstruct ambient flow fields. The novelty of this work lies in leveraging the spatial characteristics of spray and airflow data to optimize feature extraction and reduce unnecessary nonlinearity in the model. Consequently, the model offers complementary advantages, improving model interpretability and reducing its reliance on massive data. The training dataset is collected using a combined diagnostic approach, utilizing Mie-scattering imaging and fluorescence particle image velocimetry. The liquid spray and the ambient air velocity field are measured simultaneously under a wide range of experimental conditions, including different fuel types, fuel injection pressures, and fuel temperatures. The reconstruction results are validated against unseen experimental data. In general, the reconstruction results indicate that the model is accurate, fast, and robust for different fuel conditions and injector types. It provides an innovative way to reconstruct airflow fields based on spray images (spray density distribution). These findings highlight the potential of integrating physics-based and machine learning methods for multiphase flow diagnostics, paving the way for broader data-driven applications in fluid research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lzz发布了新的文献求助30
2秒前
wangyb完成签到,获得积分10
2秒前
2秒前
种子选手发布了新的文献求助10
3秒前
kangkang发布了新的文献求助10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
star发布了新的文献求助10
4秒前
5秒前
5秒前
Yimi发布了新的文献求助10
6秒前
王馨月发布了新的文献求助10
6秒前
ddk完成签到,获得积分10
6秒前
cici发布了新的文献求助30
8秒前
lfma完成签到,获得积分10
10秒前
任佳怡发布了新的文献求助10
10秒前
11秒前
元神发布了新的文献求助10
11秒前
12秒前
canoe完成签到 ,获得积分10
13秒前
大眼的平松完成签到,获得积分10
13秒前
勤恳幻然发布了新的文献求助10
14秒前
冷艳一德发布了新的文献求助10
15秒前
完美世界应助ChaChi采纳,获得30
15秒前
ff发布了新的文献求助10
16秒前
欧阳完成签到,获得积分10
16秒前
那时花开应助S妍采纳,获得10
17秒前
浮游应助淡然的梦之采纳,获得10
18秒前
超级的花卷完成签到,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4737234
求助须知:如何正确求助?哪些是违规求助? 4089578
关于积分的说明 12650046
捐赠科研通 3798768
什么是DOI,文献DOI怎么找? 2097560
邀请新用户注册赠送积分活动 1123154
科研通“疑难数据库(出版商)”最低求助积分说明 998578