Emerging cellulosic materials for sustainable mechanosensing and energy harvesting devices: Advances and prospect

纤维素乙醇 可持续能源 生化工程 纳米技术 环境科学 工程类 材料科学 可再生能源 纤维素 电气工程 化学工程
作者
Jiaqi Liao,Julia L. Shamshina,Yuanyuan Wang,Dan Sun,Xiaoping Shen,Dawei Zhao,Jiayi Zhang
出处
期刊:Nano Today [Elsevier]
卷期号:56: 102232-102232
标识
DOI:10.1016/j.nantod.2024.102232
摘要

Triboelectric nanogenerators (TENGs), as promising energy-generating devices, have paved the way for efficient energy collection at the micro-nanoscale since their inception in 2012. TENG technology can convert low-frequency, irregular minor dynamic mechanical motions into usable electrical energy, serving the dual purposes of mechanosensing and energy harvesting. Cellulose, a common biomacromolecule widely found in plants, emerges as a promising candidate for the development of versatile TENG devices due to its abundance of highly polar hydroxyl groups (-OH), which can be easily chemically modified and structurally processed. This review emphasizes the distinctive hierarchical structure of cellulose mainly extracted from wood cell walls, presenting it as macromolecular chains, nanofibers, nanosheets, and other aggregates based on the deciphering of wood cell walls. Leveraging their favorable properties of renewability, biodegradability, biocompatibility, and processability, various cellulose-based materials, including films, aerogels, hydrogels, and ionogels, are manufactured with controlled flexibility, polarity, conductivity, specific surface area, and mechanical resilience. Subsequently, the inherent capability and intrinsic mechanisms of these cellulose-based materials in electron donation and acceptance are discussed, culminating in proposed optimization strategies for the modification of cellulosic triboelectric friction materials and device configuration aimed at enhancing the surface charge density of TENGs. The potential benefits and challenges of using cellulose-based TENGs for mechanosensing and energy harvesting are also presented and discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助小不点采纳,获得10
刚刚
西柚完成签到,获得积分10
刚刚
1秒前
1秒前
可爱的函函应助99ml容量瓶采纳,获得10
1秒前
pzk发布了新的文献求助10
1秒前
缠在一起的数据线完成签到,获得积分10
4秒前
秋雪瑶应助巢周舟采纳,获得10
5秒前
5秒前
7秒前
7秒前
卑鄙的熊发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
SciGPT应助跳跃的梦凡采纳,获得10
9秒前
10秒前
10秒前
11秒前
Ava应助Lion Li采纳,获得10
13秒前
小梦完成签到,获得积分10
15秒前
16秒前
zmr123发布了新的文献求助30
18秒前
GODB1ACK应助子墨采纳,获得10
20秒前
gengwanlei发布了新的文献求助10
22秒前
aye完成签到 ,获得积分10
26秒前
27秒前
Akim应助的虔采纳,获得10
28秒前
32秒前
香妃完成签到,获得积分10
32秒前
采鹿鸣发布了新的文献求助30
33秒前
36秒前
不过敏的橙子应助xiaoliu采纳,获得10
36秒前
vsdv发布了新的文献求助10
36秒前
38秒前
39秒前
的订单完成签到,获得积分10
40秒前
42秒前
隐形的草莓完成签到,获得积分10
43秒前
的虔发布了新的文献求助10
43秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422564
求助须知:如何正确求助?哪些是违规求助? 2111736
关于积分的说明 5346519
捐赠科研通 1839224
什么是DOI,文献DOI怎么找? 915579
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489686