Toward Accurate Cardiac MRI Segmentation With Variational Autoencoder-Based Unsupervised Domain Adaptation

分割 自编码 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 图像分割 分歧(语言学) 鉴别器 体素 计算机视觉 深度学习 电信 哲学 语言学 探测器
作者
Hengfei Cui,Yan Li,Yifan Wang,Di Xu,Lian‐Ming Wu,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2924-2936 被引量:6
标识
DOI:10.1109/tmi.2024.3382624
摘要

Accurate myocardial segmentation is crucial in the diagnosis and treatment of myocardial infarction (MI), especially in Late Gadolinium Enhancement (LGE) cardiac magnetic resonance (CMR) images, where the infarcted myocardium exhibits a greater brightness. However, segmentation annotations for LGE images are usually not available. Although knowledge gained from CMR images of other modalities with ample annotations, such as balanced-Steady State Free Precession (bSSFP), can be transferred to the LGE images, the difference in image distribution between the two modalities (i.e., domain shift) usually results in a significant degradation in model performance. To alleviate this, an end-to-end Variational autoencoder based feature Alignment Module Combining Explicit and Implicit features (VAMCEI) is proposed. We first re-derive the Kullback-Leibler (KL) divergence between the posterior distributions of the two domains as a measure of the global distribution distance. Second, we calculate the prototype contrastive loss between the two domains, bringing closer the prototypes of the same category across domains and pushing away the prototypes of different categories within or across domains. Finally, a domain discriminator is added to the output space, which indirectly aligns the feature distribution and forces the extracted features to be more favorable for segmentation. In addition, by combining CycleGAN and VAMCEI, we propose a more refined multi-stage unsupervised domain adaptation (UDA) framework for myocardial structure segmentation. We conduct extensive experiments on the MSCMRSeg 2019, MyoPS 2020 and MM-WHS 2017 datasets. The experimental results demonstrate that our framework achieves superior performances than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜完成签到,获得积分10
刚刚
初见应助玩笑采纳,获得10
刚刚
1秒前
哈哈哈完成签到,获得积分10
1秒前
小蓝完成签到,获得积分10
1秒前
精明的盼雁完成签到,获得积分10
2秒前
GXLong完成签到,获得积分10
2秒前
忧郁盼夏发布了新的文献求助10
2秒前
Duoo发布了新的文献求助10
3秒前
笨笨芯完成签到,获得积分10
3秒前
3秒前
小菜鸡发布了新的文献求助10
4秒前
4秒前
DJM完成签到 ,获得积分10
4秒前
valorb完成签到,获得积分0
5秒前
哦东东完成签到,获得积分10
5秒前
难过板栗应助Hannahcx采纳,获得10
5秒前
6秒前
7秒前
Self完成签到,获得积分10
7秒前
dyyisash完成签到 ,获得积分10
7秒前
香蕉觅云应助温婉的勒采纳,获得10
7秒前
7秒前
难过板栗应助香蕉乌冬面采纳,获得30
7秒前
言之妈妈发布了新的文献求助10
7秒前
忧郁盼夏完成签到,获得积分10
8秒前
8秒前
幽默三娘发布了新的文献求助20
8秒前
个性归尘应助哦东东采纳,获得20
8秒前
秋水完成签到 ,获得积分10
8秒前
8秒前
11111完成签到,获得积分20
9秒前
孔大漂亮完成签到,获得积分10
9秒前
沉睡的大马猴完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
ggg完成签到 ,获得积分10
10秒前
成就茗完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173