Integrating pretreatment 18F-FDG PET-CT parameters, peripheral blood indicators and clinical characteristics in predicting chemotherapy plus immunotherapy outcomes for de novo metastatic nasopharyngeal carcinoma

列线图 鼻咽癌 医学 比例危险模型 内科学 肿瘤科 阶段(地层学) 多元分析 放射治疗 古生物学 生物
作者
Lisha Gu,Y-C Li,Song Xue,Binyi Xiao,Denggui Wen,L-P Wu,Xiaomin Zhang,L-Q Tang,Ling Guo,L-T Liu
出处
期刊:Rhinology [Rhinology]
标识
DOI:10.4193/rhin24.547
摘要

Background: To develop a prognostic nomogram based on pretreatment 18F-FDG PET-CT radiomics parameters, peripheral blood indicators and clinical characteristics for risk stratification in patients with de novo metastatic nasopharyngeal carcinoma (dmNPC) receiving immunochemotherapy. Methodology: The eligible patients were randomly divided into training (n=183) and validation (n=79) cohorts. Least absolute shrinkage and selection operator regression was used for variable selection. Multivariate Cox regression analysis was performed to identify independent prognostic factors for progression-free survival (PFS). The predictive accuracy and discriminative ability of the nomogram were determined with a concordance index (C-index) and calibration curve. Results: Multivariate Cox analysis suggested that total lesion glycolysis, number of metastases, Epstein–Barr virus DNA, N-stage, lactate dehydrogenase, and total bilirubin were independent predictors of PFS and were used to develop a nomogram that could classify patients into low- and high-risk groups. The C-index of the nomogram for predicting disease progression was 0.75, which was significantly higher than the C-indices of the TNM stage and EBV DNA. The patients were then stratified into low- and high-risk groups based on the calculated scores. The median PFS was significantly higher in the low-risk group than in the high-risk group. Conclusions: The proposed nomogram with PET-CT parameters, peripheral blood indicators and clinical characteristics resulted in accurate prognostic prediction for patients with dmNPC receiving chemotherapy plus PD-1 inhibitors and could provide risk stratification for these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
水间发布了新的文献求助10
1秒前
佳润完成签到,获得积分10
2秒前
4秒前
ysyao发布了新的文献求助10
5秒前
5秒前
栗薯懵发布了新的文献求助10
6秒前
6秒前
诸葛语琴完成签到,获得积分10
7秒前
adam完成签到,获得积分10
9秒前
WZH123456完成签到,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
hey应助科研通管家采纳,获得20
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
jyy应助科研通管家采纳,获得10
11秒前
嗯哼完成签到 ,获得积分10
11秒前
hey应助科研通管家采纳,获得20
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
丰知然应助科研通管家采纳,获得20
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
小牛发布了新的文献求助10
11秒前
HHH发布了新的文献求助10
11秒前
念0完成签到 ,获得积分10
12秒前
yaochenglun发布了新的文献求助10
13秒前
尧尧发布了新的文献求助10
13秒前
打打应助arbar采纳,获得10
15秒前
Booiys完成签到,获得积分10
16秒前
16秒前
18秒前
完美世界应助水间采纳,获得10
18秒前
18秒前
CipherSage应助ziyue采纳,获得10
20秒前
布楚楚发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5607982
求助须知:如何正确求助?哪些是违规求助? 4692447
关于积分的说明 14874887
捐赠科研通 4716182
什么是DOI,文献DOI怎么找? 2543917
邀请新用户注册赠送积分活动 1509011
关于科研通互助平台的介绍 1472709