Achieving Efficient Organic Room-Temperature Phosphorescence through Acceptor Dendronization

化学 磷光 接受者 光化学 荧光 光学 凝聚态物理 物理
作者
Chensen Li,Zhen‐Chen Lou,Minghui Wu,Fulong Ma,Xinmeng Chen,Haozhe Tan,Zonghang Liu,Feng Gao,Zijie Qiu,Zheng Zhao,Lianrui Hu,Guohua Xie,Maoqiu Li,Yumeng Guo,Zhongjie Ren,Song Zhang,Yuchao Liu,Shouke Yan,Zhen Li,Bo Xu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c06288
摘要

Organic room-temperature phosphorescence (RTP) materials hold significant promise for applications in optoelectronics, information security, and bioimaging. Recently, significant progress has been made in RTP materials and vacuum-deposited organic light-emitting diode (OLED) devices. However, the performance of solution-processed OLEDs is seriously lagging behind due to the lack of RTP molecular strategies that balance exciton stability and solution processability at the single-molecule scale. In this work, we propose an acceptor dendronization strategy for designing RTP materials and successfully achieving highly efficient and stable RTP emissions. This strategy can simultaneously enhance the various processes involved in RTP emission at the single-molecule level: increase the intersystem crossing channels, enhance the spin-orbit coupling constants between T1 and S0, and suppress molecular motion. Consequently, it promotes intersystem crossing and triplet radiative transition while inhibiting nonradiative transition, thereby efficiently enhancing RTP emission. A proof-of-concept acceptor-dendronized dendrimer exhibits long phosphorescence lifetimes in the millisecond range in ambient solution and near 100% photoluminescent quantum yields in the doped films. This is the first reported RTP dendrimer to date. An OLED fabricated using this dendrimer in a sky-blue emission achieves an external quantum efficiency of 25.1%, which represents the state-of-the-art efficiency based on solution-processed RTP-OLEDs to date. Our findings offer definitive guidelines for the molecular engineering of RTP materials and pave the way for innovative RTP systems in diverse optoelectronic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助果实采纳,获得10
刚刚
Akim应助果实采纳,获得10
刚刚
科研通AI2S应助果实采纳,获得10
刚刚
刚刚
化学发布了新的文献求助10
刚刚
1秒前
李锐发布了新的文献求助30
1秒前
2011完成签到 ,获得积分10
1秒前
2秒前
bkagyin应助宝川采纳,获得10
2秒前
玫瑰少年完成签到 ,获得积分10
3秒前
nbing发布了新的文献求助10
3秒前
花花发布了新的文献求助30
3秒前
阿龙完成签到,获得积分20
4秒前
千幻发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
WIND-CUTTER发布了新的文献求助10
7秒前
天虾第一发布了新的文献求助10
7秒前
nbing完成签到,获得积分10
8秒前
zqq发布了新的文献求助10
9秒前
柯一一应助Madge采纳,获得10
10秒前
wanci应助夜夜采纳,获得10
10秒前
JamesPei应助yuisl采纳,获得10
10秒前
10秒前
彭于晏应助SYC采纳,获得10
10秒前
11秒前
微笑完成签到,获得积分10
11秒前
11秒前
Denmark发布了新的文献求助30
12秒前
李爱国应助寇婧怡采纳,获得10
12秒前
星辰大海应助迅速的果汁采纳,获得10
12秒前
所所应助张鑫采纳,获得10
13秒前
zero0发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
科研通AI2S应助公司账号2采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Essentials of consensual qualitative research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3915144
求助须知:如何正确求助?哪些是违规求助? 3460570
关于积分的说明 10912304
捐赠科研通 3187503
什么是DOI,文献DOI怎么找? 1761895
邀请新用户注册赠送积分活动 852420
科研通“疑难数据库(出版商)”最低求助积分说明 793370