清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Solitary Pulmonary Nodules: Clinical Prediction Model Versus Physicians

医学 放射科 肺孤立结节 结核(地质) 肺癌 开胸手术 射线照相术 活检 外科 内科学 计算机断层摄影术 生物 古生物学
作者
Stephen J. Swensen,Marc D. Silverstein,Eric S. Edell,Victor F. Trastek,Gregory L. Aughenbaugh,Duane M. Ilstrup,Cathy D. Schleck
出处
期刊:Mayo Clinic Proceedings [Elsevier BV]
卷期号:74 (4): 319-329 被引量:147
标识
DOI:10.4065/74.4.319
摘要

Objective To determine whether a clinical prediction model developed to identify malignant lung nodules based on clinical data and radiologic lung nodule characteristics could predict a malignant lung nodule diagnosis with higher accuracy than physicians. Material and Methods One hundred cases were obtained by using a stratified random sample from a retrospective cohort of 629 patients with newly discovered 4- to 30-mm radiologically indeterminate solitary pulmonary nodules (SPNs) on chest radiography. A chest radiologist, pulmonologist, thoracic surgeon, and general internist made predictions of a malignant lesion and recommendations for management (thoracotomy, transthoracic needle aspiration biopsy, or observation) on the basis of radiologic and clinical data used to develop the clinical prediction rule. The predictions of a malignant lung nodule were compared with the probability of malignant involvement from a previously validated clinical prediction model to identify malignant nodules on the basis of three clinical characteristics (age, smoking status, and history of cancer greater than or equal to 5 years previously) and three radiologic characteristics (nodule diameter, spiculation, and upper lobe location). Results Receiver operating characteristic analysis showed no significant difference between the logistic model and the physicians' predictions. Calibration curves revealed that physicians overestimated the probability of a malignant lesion in patients with low risk of malignant disease by the prediction rule; this finding suggests a potential for the decision rule to improve the management of patients with SPNs that are likely to be benign. Conclusion The prediction model was not better than physicians' predictions of malignant SPNs. The prediction rule may have potential to improve the management of patients with SPNs that are likely to be benign. To determine whether a clinical prediction model developed to identify malignant lung nodules based on clinical data and radiologic lung nodule characteristics could predict a malignant lung nodule diagnosis with higher accuracy than physicians. One hundred cases were obtained by using a stratified random sample from a retrospective cohort of 629 patients with newly discovered 4- to 30-mm radiologically indeterminate solitary pulmonary nodules (SPNs) on chest radiography. A chest radiologist, pulmonologist, thoracic surgeon, and general internist made predictions of a malignant lesion and recommendations for management (thoracotomy, transthoracic needle aspiration biopsy, or observation) on the basis of radiologic and clinical data used to develop the clinical prediction rule. The predictions of a malignant lung nodule were compared with the probability of malignant involvement from a previously validated clinical prediction model to identify malignant nodules on the basis of three clinical characteristics (age, smoking status, and history of cancer greater than or equal to 5 years previously) and three radiologic characteristics (nodule diameter, spiculation, and upper lobe location). Receiver operating characteristic analysis showed no significant difference between the logistic model and the physicians' predictions. Calibration curves revealed that physicians overestimated the probability of a malignant lesion in patients with low risk of malignant disease by the prediction rule; this finding suggests a potential for the decision rule to improve the management of patients with SPNs that are likely to be benign. The prediction model was not better than physicians' predictions of malignant SPNs. The prediction rule may have potential to improve the management of patients with SPNs that are likely to be benign.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到 ,获得积分10
20秒前
Wang完成签到 ,获得积分20
28秒前
35秒前
fairy完成签到 ,获得积分10
36秒前
Miyano0818发布了新的文献求助30
48秒前
一盏壶发布了新的文献求助10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
毛毛完成签到,获得积分10
1分钟前
刻苦羽毛完成签到 ,获得积分10
1分钟前
川藏客完成签到 ,获得积分10
1分钟前
1分钟前
2401发布了新的文献求助10
2分钟前
一盏壶完成签到,获得积分10
2分钟前
2401完成签到,获得积分20
2分钟前
科研通AI5应助iwsaml采纳,获得10
2分钟前
星辰大海应助一盏壶采纳,获得30
2分钟前
CipherSage应助iwsaml采纳,获得10
2分钟前
害羞便当完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Krim完成签到 ,获得积分10
3分钟前
FloppyWow完成签到 ,获得积分10
4分钟前
earthai完成签到,获得积分10
4分钟前
万能图书馆应助湖里采纳,获得10
4分钟前
芝麻汤圆完成签到,获得积分10
4分钟前
自然之水完成签到,获得积分10
4分钟前
merrylake完成签到 ,获得积分10
4分钟前
hongt05完成签到 ,获得积分10
5分钟前
随影相伴完成签到 ,获得积分10
5分钟前
搜集达人应助xuuu采纳,获得30
5分钟前
随心所欲完成签到 ,获得积分10
6分钟前
6分钟前
磊大彪完成签到 ,获得积分10
6分钟前
iwsaml发布了新的文献求助10
6分钟前
6分钟前
xuuu发布了新的文献求助30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
沉默的友安完成签到 ,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815862
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402354
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743