材料科学
磷化物
阳极
石墨烯
氧化物
化学工程
纳米技术
微观结构
电化学
电极
多孔性
复合材料
金属
冶金
化学
物理化学
工程类
作者
Zhaoqiang Li,Luyuan Zhang,Xiaoli Ge,Caixia Li,Shihua Dong,Cheng‐Xiang Wang,Longwei Yin
出处
期刊:Nano Energy
[Elsevier BV]
日期:2017-01-06
卷期号:32: 494-502
被引量:316
标识
DOI:10.1016/j.nanoen.2017.01.009
摘要
Confronted with the difficult in tuning the microstructures (components, crystalline state and particle size) of metal phosphide anodes for sodium ion batteries (SIBs), it is of great challenge and fundamentally important to develop a rational strategy to design hierarchically porous structure metal phosphide anodes for high-performance SIBs. Herein, for the first time, a unique core-shell porous [email protected] phosphide micocubes interconnected via reduced graphene oxide (RGO) nanosheets ([email protected]@FeP) are for the first time synthesized via a low-temperature phosphorization process using prussion blue as reactant template. The [email protected]@FeP hierarchical architecture SIBs anodes exhibit greatly improved reversible capacity, cycling stability and excellent rate capability. The enhanced electrochemical performance of [email protected]@FeP is ascribed to the uniquely porous core-shell microstructure and synergistic effect between the phosphide components. The core-shell structure with FeP as core and CoP as shell can provide enough cushion spaces for volume changes, as well as shorten the Na+ diffusion path. The interconnected RGO nanosheets and carbon layer wrapped on the FeP core cubes together build a conductive highway, enhancing charge transfer kinetics. The present strategy using MOFs as reactant templates for porous core-shell phosphide electrodes can be extended to other novel electrodes for high performance energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI