Comparison between Calculation Methods for Semantic Text Similarity based on Siamese Networks

计算机科学 语义相似性 余弦相似度 相似性(几何) 判决 任务(项目管理) 人工智能 匹配(统计) 情报检索 自然语言处理 语义匹配 文字嵌入 嵌入 数据挖掘 模式识别(心理学) 数学 图像(数学) 统计 管理 经济
作者
Keyang Wang,Yiping Zeng,Fanyu Meng,Feiyu,Lili Yang
标识
DOI:10.1145/3478905.3478981
摘要

In the era of information explosion, people are eager to obtain contents that meet their own needs and interests from massive amounts of information. Therefore, how to understand the needs of Internet users correctly and effectively is one of the urgent problems to be solved. In this case, semantic text similarity task is useful in many application scenarios. To measure semantic text similarity based on text matching model, several Siamese networks are constructed in this paper. Specifically, we firstly use the Stsbenchmark dataset, regarding the GloVe, BERT and DistilBERT as initial models, and add deep neural networks to train and fine-tune, fully utilizing the advantages of the existing models. Next, we test several similarity calculation methods to quantify the semantic similarity of sentence pairs. Moreover, the Pearson and Spearman correlation coefficients are used as evaluation indicators to compare the sentence embedding effects of different models. Finally, experiment result shows the Siamese network based on BERT model has the optimal effect among all, with the highest accuracy rate up to 84.5%. While among several similarity calculation methods, the Cosine Similarity usually obtain the best accuracy rate. In the future, this model can be appropriately used in semantic text similarity tasks, through matching texts between users' needs and knowledge base. In this way, we can improve machines' language understanding ability as well as meeting the diverse needs of users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助开朗忆曼采纳,获得10
1秒前
科研通AI5应助hob采纳,获得10
1秒前
1秒前
我我我完成签到,获得积分10
1秒前
风中的语堂完成签到,获得积分10
2秒前
3秒前
Heliotrope完成签到,获得积分10
3秒前
王三发布了新的文献求助10
3秒前
lalaland完成签到,获得积分10
4秒前
4秒前
4秒前
杨不二发布了新的文献求助10
5秒前
Ori发布了新的文献求助10
6秒前
坚定的觅山完成签到,获得积分10
6秒前
滕遥完成签到,获得积分10
6秒前
8秒前
wanyanjin发布了新的文献求助10
9秒前
syangZ完成签到,获得积分10
10秒前
rio发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
杰帅完成签到,获得积分10
11秒前
YHT完成签到,获得积分10
11秒前
Lucas应助Asterisk采纳,获得10
12秒前
5年科研3年毕业完成签到,获得积分10
12秒前
12秒前
12秒前
顾矜应助金钱采纳,获得10
13秒前
干雅柏发布了新的文献求助10
13秒前
13秒前
鱼块完成签到,获得积分10
13秒前
roclie发布了新的文献求助10
14秒前
Ori完成签到,获得积分20
14秒前
花样年华完成签到,获得积分0
15秒前
yull完成签到,获得积分10
15秒前
16秒前
22222发布了新的文献求助30
16秒前
hob发布了新的文献求助10
16秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889