[Determination of 10 fluoroquinolones residues in aquatic products by accelerated solvent extraction, magnetic solid-phase extraction, and high-performance liquid chromatography-tandem mass spectrometry].

色谱法 化学 探索者 萃取(化学) 固相萃取 分析物 农药残留 杀虫剂 农学 生物
作者
Dan Wei,Ming Guo,Zhang Ju
出处
期刊:Sepu [Science Press]
卷期号:38 (12): 1413-1422 被引量:2
标识
DOI:10.3724/sp.j.1123.2020.05002
摘要

In the aquaculture industry, fluoroquinolones are widely used as effective therapeutic agents to prevent animal diseases. The wide bactericidal activity of fluoroquinolones strongly depends on their concentration. Abuse of fluoroquinolones is considered the main reason for the possible occurrence of residues in aquatic products. The increasing presence of residues in aquatic products may pose potential risks to human health. Therefore, it is important to develop an efficient, sensitive, and reliable method for the simultaneous determination of fluoroquinolones in aquatic products. In the analysis of fluoroquinolones, many HPLC methods with different detection techniques have been applied. Among the most common used techniques, HPLC-MS is possible for the determination of very low level analytes in matrix. For the determination of low concentrations of fluoroquinolone residues in aquatic products, preliminary extraction and purification steps are frequently needed to achieve low detection limits. Accelerated solvent extraction (ASE) is well suited for the determination of organic pollutants in solid samples. ASE has the advantages of a high degree of automation, sufficient extraction, high speed, and less solvent consumption, but it has the disadvantage of poor purification effects. Magnetic solid-phase extraction (MSPE) has attracted considerable attention on account of its benefits such as easy separation, less solvent consumption, and quick adsorption of antibiotic residues in liquid samples. The combination of ASE with MSPE makes it possible to sufficiently extract and further purify the target compounds from complex solid samples. Compared with the currently used purification methods of SPE and QuECHERS, MSPE has advantages such as no need of centrifugation and filtration, less solvent consumption, and low cost by appropriate choice of magnetic materials. In this study, a method based on ASE-MSPE-HPLC-MS/MS was developed for the simultaneous determination of sarafloxacin, ofloxacin, enrofloxacin, danofloxacin, lomefloxacin, pefloxacin, ciprofloxacin, enoxacin, norfloxacin, and difloxacin in yellow croaker, grass carp, black fish, prawn, and macrobrachium. As a magnetic purification sorbent, a graphene oxide nanoscale-coated zerovalent iron adsorbent composite (GO@nZVI), was facilely prepared at room temperature. GO and nZVI solutions were rapidly vortex-mixed at 25℃, and then, the magnetite precipitate was magnetically isolated to obtain GO@nZVI. Simpler than the usually used preparation methods, GO@nZVI can be fabricated without complicated multi-step synthesis, fussy operation and harsh conditions. nZVI nanomaterials have strong multiple interactions (hydrogen bonding, electrostatic interaction or their combination) with GO composite only with appropriate adjustment of pH values. The synthesized magnetic purification sorbents were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD), indicating the successful formation of GO@nZVI. The magnetic material was used to purify and extract ten fluoroquinolone residues in aquatic products via MSPE, followed by ASE. In ASE step, the analytes were extracted from the aquatic products using methanol for 5 min at 70℃, under an extractive pressure of 10.34 MPa for three cycles. The extract was purified by MSPE using GO@nZVI. The target compounds were separated on an Agilent ZORBAX Eclipse Plus C18 column (100 mm×3.0 mm, 1.8 μm) with gradient elution, and analyzed in multiple reaction monitoring (MRM) mode with positive electrospray ionization (ESI+). Under the optimized conditions, good linearities were obtained for the ten fluoroquinolones in the range of 1-100 μg/kg, with correlation coefficients above 0.99. LODs (S/N=3) and LOQs (S/N=10) were 0.02-0.29 μg/kg and 0.07-0.98 μg/kg, respectively. At three spiked levels, the recoveries of the fluoroquinolones were between 81.6% and 105.8%, with RSDs between 4.2% and 13.6%. Overall, the major advantages of this combined ASE-MSPE-HPLC-MS/MS method are facile preparation of the magnetic purification material, automated and simple operation, high sensitivity, short extraction time, and less solvent consumption. This sensitive, repetitive method could be successfully employed for the determination of ten fluoroquinolone residues in aquatic products, with good recoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
yaoxc应助科研通管家采纳,获得30
4秒前
鱼咬羊发布了新的文献求助200
5秒前
清新的夏烟完成签到,获得积分10
7秒前
春樹暮雲完成签到 ,获得积分10
12秒前
小二郎应助小源同学采纳,获得10
12秒前
曲奇完成签到,获得积分20
12秒前
William完成签到 ,获得积分10
17秒前
18秒前
19秒前
1117完成签到 ,获得积分10
23秒前
家妙彤完成签到,获得积分10
25秒前
香蕉觅云应助YP_024采纳,获得10
26秒前
小源同学发布了新的文献求助10
26秒前
28秒前
小源同学完成签到,获得积分10
32秒前
35秒前
你博哥完成签到 ,获得积分10
39秒前
GrandeAmore完成签到,获得积分10
40秒前
47秒前
dch发布了新的文献求助10
48秒前
48秒前
48秒前
羊东蒽发布了新的文献求助10
52秒前
53秒前
小菜在努力了完成签到,获得积分20
54秒前
激动的萧发布了新的文献求助10
55秒前
学医的杨同学完成签到,获得积分10
58秒前
研友_RLNzvL发布了新的文献求助30
58秒前
chizuru发布了新的文献求助10
59秒前
李健应助皮卡丘采纳,获得10
1分钟前
小江不饿完成签到 ,获得积分10
1分钟前
hanchangcun发布了新的文献求助10
1分钟前
激动的萧完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
归尘发布了新的文献求助30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315